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Why Low Temperature Characterization
X-Ray by Measurement
• LIV

– Power at lower temperatures for deep space missions such as Juno and when coming 
out of eclipse in earth based orbits

• QE
– Current mismatch is affected by temperature
– Band edges shift as a function of temperature which in turn affects how much of the 

solar spectrum is absorbed by each junction
• Subcell IV

– Subcell open circuit voltage
– Subcell diode properties
– Quantify midgap defect energy

• EL
– Identify junction quality
– Identify energy level of defects

• Hopefully provide more accurate data and develop models to improve on orbit 
performance of solar cells
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Temperature Dependent LIV
Why Radiometric Calibration

• Standard method:  Calibrate simulator using 
solar cell isotypes of a given technology at 
28°C.  Next, vary the temperature of the 
solar cell and measure LIV data

– Historically calibration standards of 
multijunction junction solar cells are 
made from high altitude flights and their 
calibration values are set to be at 28C.

• Problems with Standard method:
– The simulator is not a good “Constant”. 

The spectrum of the lab looks very 
different than AM0

– As the absorption properties of the solar 
cell change, how much light they see 
from a simulator changes as well. 
Because the simulator spectrum is not a 
good match to AM0 this can introduce 
error

• By using radiometric calibration we can 
alleviate this problem

J1 J2 J3
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Radiometric Calibration

• Radiometric calibration uses a spectroradiometer to measure the spectrum of 
the simulator

• Quantum efficiency measurements of monolithic multijunction solar cells are 
used to tune the spectrum of the simulator instead of isotypes

– Effectively mimics isotypes without the need of isotypes
• A set of filters to tune the color spectrum of the lamp and iris to tune the 

intensity allow for the ability to tune up to 6 zones on our X-25 solar simulator

J1
J2

J3

100%
s
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Tuning for Temperatures
Tuning Radiometrically

• Solar simulator was tuned for each temperature as referenced to 
E490 AM0

• Results in a different solar simulator spectrum for each temperature

80K 300K

Radiometric 
Tuning
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Difference between each Simulator Spectrum

• All simulator spectra were normalized to the 300K tune
• Most of the spectral differences are in the J2 and J3
• Spectrum can be up to 15% off
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How well does radiometric match AM0?

• Pretty well….better than not 
tuning radiometrically

• Tuning for each temperature 
allows almost a near perfect 
match to E490

• If you only tune for one 
temperature (300K in this case), 
the cell ends up being J3 limited 
at 80K

• J1 was a close match to AM0 
regardless of method

• This is the case with our 
simulator and represents 
potential lab-to-lab differences

Normalized to AM0
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LIV

• Current decreases and 
voltage increases with 
decreasing temperatures…as 
expected

• Fill Factor rises, maxing out at 
150K and begins to decrease

• Efficiency reaches a 
maximum of > 36% at 80K 
from 28% at 300K
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Balloon Calibration vs Radiometric Calibration

• Radiometric tuning allows for 
an accurate determination of 
efficiency at lower 
temperatures

• If we tune using the standard 
method the efficiency actually 
goes down at lower 
temperatures

• Also the short circuit current 
produced from the standard 
method and radiometric is 
very different.  The balloon 
calibration tune yields lower 
currents

– Still investigating the cause 
for this

BalloonCal
RadioCal
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Subcell Characterization

Current (I)

Quantum Efficiency

Voltage (V)

Electroluminescence Subcell I-V Curve
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Low Temperatures Subcell I-V

• As seen in the LIV the subcell I-V 
shifts to higher voltage at lower 
temperatures

• A tunnel defect appears to show 
up at lower temperatures for J1 
and J2

• Lines through points represents 
fits to diode equation

• Future analysis will look into the 
midgap energy and change in 
ideality with temperature and 
compared to post radiation testing
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Low Temperature Electroluminescence

• The top cell EL intensity behaves contrary to typical III-V direct and indirect materials.  
– Luminescence intensity decreases with decreasing temperatures.  
– The peak band energy blue shifts as expected. 
– At temperatures below 120K the luminescence intensity begins to increase and low energy shoulder begins to appear. 
– Behavior has been observed in higher bandgap InGaP materials with a large Ga content [1]
– A possible reason for the EL behavior could be due to ordered and disordered layers in the InGaP top layers [2]

• Middle cell behaves exactly as expected
– At lower temperatures a low energy defects begins to appear
– Intensity increase stabilizes

• Bottom cell intensity behaves similar to the top cell due to its indirect nature
– Broad band emission is due to diffusion of Ge and dopants between the middle and Ge bottom cell [3]

J1 J2 J3

[1] C. Wang, B. Wang, R. I. Made, S.-F. Yoon, and J. Michel, “Direct bandgap photoluminescence from n-type indirect GaInP alloys,” Photonics Res., vol. 5, pp. 239–244, 2017
[2] L. Bhusal et al., “Ordering induced direct-indirect transformation in unstrained Ordering induced direct-indirect transformation in unstrained GaxIn1−xP for 0.76 ≤ x ≤ 0.78,” vol. 114909, pp. 1–4, 
2009
[3] G. Brammertz et al., “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys., vol. 99, no. 9, 2006

Ge

InGaAs↔Ge
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Lots more to do

• Conclusions
– Radiometric calibration allows for accurate low temperatures LIV measurements that 

match well to AM0
– Obtained low temperature quantum efficiency of multijunction solar cells
– Demonstrated measurement of low temperature subcell current-voltage curves
– Identified potential disorder in top cell as well as finally figured out the origin of the 

broadband luminescence in the IR luminescence
• Next Step

– Perform defect energy analysis using luminescence, DIV, and subcell I-V data
– Irradiate solar cell and see what happens

• We know the ideality changes but now we want to see what defects show up in EL 
and energy of those defects

– Perform annealing studies to see how the defects stay or go away
– Ultimately relate this to some model to better predict radiation degradation in solar 

cells
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