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Project Overview

• Investigate effects of e- and p+ exposure 

on optoelectronic properties of 

AlGaAs/GaAs double heterostructure (DH) 

test articles using steady state and time 

resolved photoluminescence.

• Compare effects on MBE and MOCVD 

grown test articles. 

• Active regions doped unintentionally 

(UID), p-doped (Be or Zn) and n-doped 

(Si) to concentrations of approximately 

1x1016, 5x1017 and 1x1019 cm-3.

Active Region: GaAs

(1000 nm)

Al0.38Ga 0.62As (100 nm)

Al0.38Ga 0.62As (100 nm)

Substrate: GaAs

Buffer: GaAs

Cap: GaAs (20 nm)
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Particle Energies

Defects form throughout the active region bulk. Protons implanted into active region.

• Electrons – 1 MeV. Capable of 

generating displacement damage 

and other non-ionizing effects. 

• Protons – 135 keV. Ion implantation 

and radiation effects in DH’s modeled 

using SRIM (Stopping Range of Ions 

in Matter) simulator.

Proton Generated 

Displacements

Proton Deposition 
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Sample Exposure

• Protons - 135 keV. Doses: 1x1010, 5x1010 and 1x1011 p+/cm2. Sample 

irradiation at The Aerospace Corporation Low Energy Accelerator 

Facility (LEAF).

• Electrons – 1 MeV. Doses: 1x1012, 1x1013 and 1x1014 and 5x1014 e-/cm2. 

Sample irradiation at Boeing Radiation Effects Laboratory (BREL). 
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Steady-State Photo-Luminescence Characterization 

(SSPL)

• Steady-state (i.e., time invariant) photo-luminescence at constant carrier 

density excited by controlled irradiance from continuous wave laser.

• Analysis of photo-luminescence spectra facilitates identification of 

radiation induced sub-bandgap energy states.

• Performed at ~ 5 K to resolve energy states via carrier recombination.

• Not as comprehensive as deep level transient spectroscopy for defect 

identification. However, SSPL can reveal the possible presence of specific 

trap states1.

1 Appl. Phys. Lett., 36(8), pp. 664-666 (1980).
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SSPL Characterization System

Cryostat and Sample

Ti-Saph

Chopper

Pump

Controller

Cryostat and Sample

Monochromator

PMT

Computer

Lock-in Amplifier
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Exciton Defect States  

2 J. of Phys. and Chem. of Sol., 36, pp. 1041-1053 (1975).

Free-To-Bound Transitions2

C: 1.4935 25.5 meV

Si: 1.4850 34.0 meV

Ge: 1.4790 40.0 meV

Sn: 1.349 170.0 meV

Zn: 1.4888 30.2 meV

Cd: 1.4848 34.2 meV

Be: 1.4915 27.5 meV

Mg: 1.4911 27.9 meV

(eV +/- 0.3 meV) D (1.519-FB)

Exciton Bound to Neutral                

Acceptor Transitions2

(eV +/- 0.05 meV) D (1.519-BE)

C: 1.5124 6.6 meV

Si: 1.5123 6.7 meV

Ge: 1.5126 6.4 meV

Sn: 1.5067 12.3 meV

Zn: 1.5122 6.8 meV

Cd: 1.5123 6.7 meV

Be: 1.5124 6.6 meV

Mg: 1.5124 6.6 meV

Red: candidate assignments for measured spectra. 

Defect mediated recombination at cryogenic temperatures
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DH Characterization Prior to Irradiation: MBE and 

MOCVD Grown UID and p-Doped (Be or Zn) – 5 K

MBE: possible phonon mode at ~ 1.456 eV. Possible Be defect in UID and p-GaAs DH            
(Be 1x1016 cm-2) at ~ 1.492 eV. 
MOCVD Potental phonon mode and defect state energies similar to those for MBE
samples. 1.505 eV feature specific to MBE growth. 
MBE and MOCVD - Bandstructure broadening for Be (5x1017 cm-2) at ~ 1.492 eV and Be 
(1x1019 cm-2) at 1.477 eV may indicate Mott transition and bandgap renormalization 
respectively3.
3 Fund. of Semicond., Phys. and Mat. Prop., pp. 342-355, 4th Ed., Springer (2010).
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DH Characterization Prior to Irradiation: MBE and 

MOCVD Grown UID and n-Doped (Si) – 5 K

MBE - State at ~ 1.484 eV, left, could be bandedge phonon mode or a silicon defect state. 
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Time Resolved Photo-Luminescence Characterization 

of Materials (TRPL)

• Transient population of carriers excited by mode-locked Ti:Sapphire

laser operating with ~ 200 femtosecond pulse duration. 

• Pulse rate adjusted (via pulse picker) to ensure complete excess carrier 

relaxation prior to next excitation pulse.

• Time-correlated single photon counting (TCSPC) used to monitor 

radiative carrier relaxation.

• Performed at room temperature for examination of bandedge

luminescence lifetimes exceeding detector impulse response function 

(IRF) limit. 
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TRPL Characterization System

Ti-Saph Pump

Controller

Cryostat and Sample

Monochromator

Computer

Delay 

Generator

Pulse 

Picker

Photo-diode

Discriminator

Detector

Discriminator
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TRPL Measurements of Carrier Recombination

• Decay not first-order: multiple independent carrier recombination channels 

and/or carrier density dependent effects.

• Intensity weighted average lifetime characterizes overall carrier relaxation rate. 

The time constants from each multi-exponential term is weighted by its 

fractional contribution (fi) to the decay profile:    = σi fii , fi = Aii/(i Aii) 
where Ai, i are the amplitude and e-1 time of ith exponential.
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Radiation Effects on Low Temperature 

Bandedge/Defect State Emission
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Proton and Electron Exposures: p-type

Implanted protons constitute trap centers in GaAs4 (left, features induced at lowest 

dose in lowest p-doped samples).
4 J. Appl. Phys., 100(034503), pp. 1-7 (2006).
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Proton and Electron Exposure Comparison: n-type
MBE

Hydrogen ions passivate shallow donor states in GaAs possibly by direct bonding to 

donor4. No resolvable evidence for proton induced trap state formation or state 

passivation in n-type samples. For these, majority of carrier recombinations could 

occur at the bandedge or at shallow donor states, unaffected by trap formation. 
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Electron Radiation Induced Bandedge PL Reduction

n-type samples appear to be more radiation hard for both growth methods. p-type 

sample resilience increases with doping density. 

Comparison between lowest and highest doses

𝑃𝐿𝑅𝐹 =
𝐼(𝐷𝑜𝑠𝑒 = 1𝑥1012 ൗ𝑒−

𝑐𝑚2)

𝐼(𝐷𝑜𝑠𝑒 = 5𝑥1014 ൗ𝑒−
𝑐𝑚2)
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SSPL Summary

• Low temperature SSPL reveals defect states potentially associated 

with dopants and impacted by radiation exposure.

• Possible proton radiation induced trap formation for p-type 

samples. No evidence of donor state passivation.  

• Greater radiation induced bandedge PL reduction for p-type than 

for n-type samples. p-type sample resilience increases with doping 

density. 

• Radiation induced hole trap formation not as rigorously examined 

for p-type GaAs as for n-type4,5. More analysis of radiation effects in 

p-type GaAs warranted. 

4 J. Appl. Phys., 100(034503), pp. 1-7 (2006).
5J. Appl. Phys., 53(2), pp. 8691-8696 (1982).
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Radiation Effects on

Recombination Coefficients
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Rate Equation at Low Carrier Injection

• Rate equation:

• Low injection condition:

• Modified rate equation:

• Mono-exponential decay 

lifetime:

• Linear fit of decay lifetime 

inverse as a function of 

doping level to estimate 

𝐵 and 𝑘𝑛𝑟.

Pulse energy ~ 1 nJ, pump angle of incidence to cryostat = 32o, CaF2 cryostat window, 
GaAs sample cap, spot size radius of ~ 250 mm, and e-1 attenuation length in GaAs of
1 mm  a peak carrier density of < 1x1015 cm-3 (ignores losses at optics).                      
1x1015 cm-3 <lowest doping = 1x1016 cm-3 (low injection approximation valid).  

𝜕
𝜕𝑡

= − 𝐵𝑁 + 𝑘𝑛𝑟  − 𝐵2


𝑁
≪ 1; 𝐵2 ≪ 𝐵𝑁

𝜕
𝜕𝑡

≅ − 𝐵𝑁 + 𝑘𝑛𝑟 

𝜏𝑜
−1 = 𝐵𝑁 + 𝑘𝑛𝑟
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Non-Radiative Coefficient

Radiation Effects

• Definition of lifetime                   

damage coefficient6 (𝑘𝜏): 

• Radiation modified                         

non-radiative coefficient:

Radiation damage to the bulk increases the rate of non-radiative carrier recombination.

6 IEEE Trans. on Nuc. Sci., 43(6), pp. 2601-2608 (1996).

𝜏−1 = 𝜏𝑜
−1 + 𝑘𝜏𝜙; 𝜙 = radiation fluence

𝜏−1 = 𝐵𝑁 + 𝑘𝑛𝑟 + 𝑘𝜏𝜙

𝑘𝑛𝑟(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑) = 𝑘𝑛𝑟 + 𝑘𝜏𝜙
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Lifetime Damage Coefficients
Electron exposure

Possible damage reduction for p-type samples at higher doping levels. No apparent 

correlation for n-type materials. 
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Proton Effects on Non-Radiative Coefficients

Blue: p-type samples.
Red: n-type samples.

• Two order of magnitude increase in non-radiative coefficient 

between no exposure and lowest dose. Percent increase 

comparable for both material types. 

• Coefficients not computed for higher doses: lifetimes approaching 

detector IRF limit.   

• No uncertainty estimates for n-type samples: no TRPL collected for 

doping concentration of 1x1019 cm-3. No resolvable bandstructure at 

room temperature. Only two data points available for coefficient 

estimates.

MBE

𝑘𝑛𝑟 (cm3/s)(cm-2)
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Electron Effects on Non-Radiative Coefficients

No significant difference between growth techniques. 
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• Nearly two order of magnitude increase in non-radiative coefficient.

• Coefficients not computed for highest dose: lifetimes approaching 

detector IRF limit.   

• No uncertainty estimates for n-type samples: no TRPL collected for 

doping concentration of 1x1019 cm-3. No resolvable bandstructure at 

room temperature. Only two data points available for coefficient 

estimates.
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Change in Non-Radiative Coefficient per Unit Dose 
Electron exposure, from linear fits to data in Slide 23

Smallest for n-type MOCVD samples, almost distinct to 1-s. Could suggest that the n-

type specimens are more radiation hard to 1 MeV electron effects than the p-type 

ones. 
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Summary

• Proton implantation appears to generate trap states in p-type material. 

• Radiation induced bandedge PL reduction suggests that p-type samples are 

more prone to electron induced degradation. Effect mitigated by increased 

doping concentration. 

• Non-radiative coefficients for p-type material appear to increase more as a 

function of exposure dose in comparison to those for n-type. 

• Radiation mitigation efforts should address bulk changes in the p-type region of 

a photovoltaic junction device. 

• Analysis of radiation effects in p-type GaAs under represented in the literature. 

Further study is warranted, especially if p-type GaAs is more vulnerable than n-

type to radiation induced carrier dynamic degradation effects.
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