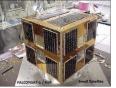


Addressing the SWaP-C Revolution by Aggregating Power System Command and Control

> Tim Meade Cobham Semiconductor Solutions Space Power Workshop April 25, 2018

Agenda


- Satellite Industry Snapshot
- Implementation Priorities by Satellite Class
- Sources of Electronic Failures in Satellite Applications
- Consider SWaP-C Opportunities in Satellite Power Systems
- Evaluate Where/How PMBusTM Fits in the Satellite Power System
- Mention Next Steps Toward PMBus[™] Adoption in Satellites
- Questions

Satellite Industry Metrics at a Glance

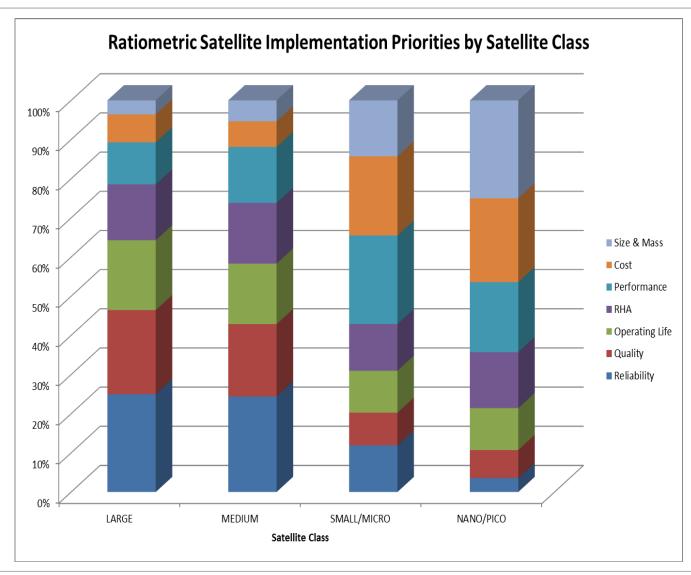
COBHAM

Most Growth is in 30W-400W Class

PodesQuite - Pros Sanifits	A Ser-Trans Sealth TheoSE44 SA-30

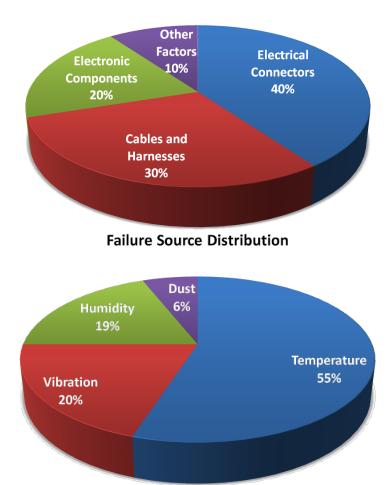
	PocketQuivethag/02-81-5.8					
	PICO	NANO	MICRO	SMALL	MEDIUM	LARGE
Mass (kg)	<1	1-10	10-100	100-500	500-1000	>1000
Power (W)	<20	10-30	25-100	75-400	350-5k	5k-15k
Max Volume	125 in^3	750 in^3	18K in^3	45K in^3	284K in^3	1M in^3
Mission Life	1 Yr	3 Yrs	5 Yrs	7 Yrs	7+ Yrs	15+ Yrs
Top Satellite Price (USD)	< \$500k	\$2M	\$10M	\$25M	\$50M	\$100M+
Growth (CAGR)	ND	16.2%	16.2%	11%	6.8%	4.96%
2018 Deploy Expected	ND	185	51	43	32	35
Example	PocketQube	F1-CubeSat	FalconSat-1	FASTSAT	Galileo	TDRS-K

High growth rate driven by Mega Constellation Initiatives and Space Industry's Trend to prioritize Size-Weight-Power-Performance-Cost over Reliability and Space Assured Devices


Data Sources: Forecast International Satellite Production Database; Space Works Launch Demand Database; Teal Group; Euroconsult Report

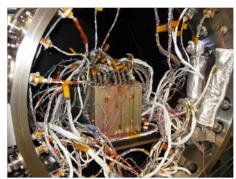
Graphics from: NASA; ESA; Wikimedia Commons

Satellite Implementation Priorities


- Large & Medium Sats focus on mission assurance
- Small Sats seek maximize performance size & weight, with the best assurance practical
- NANO/PICO sats are driven by cost and size, settling with whatever performance and reliability is achievable

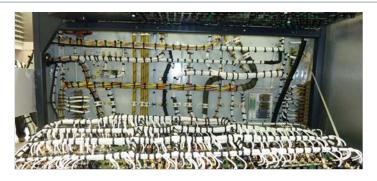
Environment Induced Failure Modes

- Examples of Environmental Stress Failures in Spacecraft Electronic Assemblies:
 - Connector contact corrosions
 - Contact fractures
 - Loose hardware
 - Wire/harness breakage
 - Solder Fatigue
 - Cracked IC packages
 - Lead and lead frame fractures
 - De-lamination
 - Radiation induced failures...


Source: International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 3, March 2014, K.P. Subramanya, et al., "Vibration Analysis Study of Spacecraft Electronic Package: A Review" pgs. 503-04.

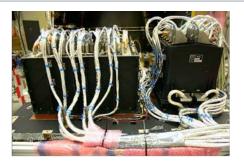
www.Cobham.com/HiRel

Failure Trends in Spaceborne Electronic Systems

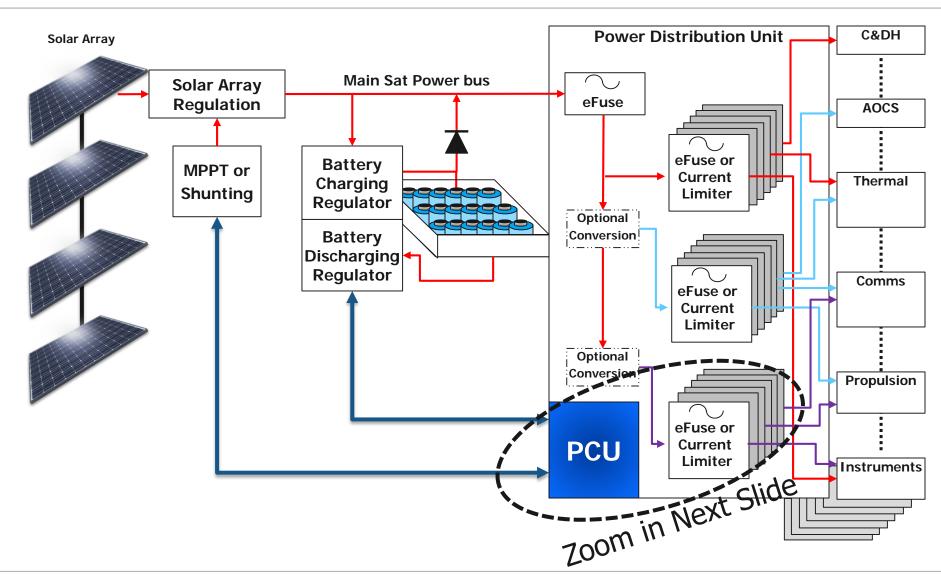


Harnessing, Connectors and Cables Oh My!!!

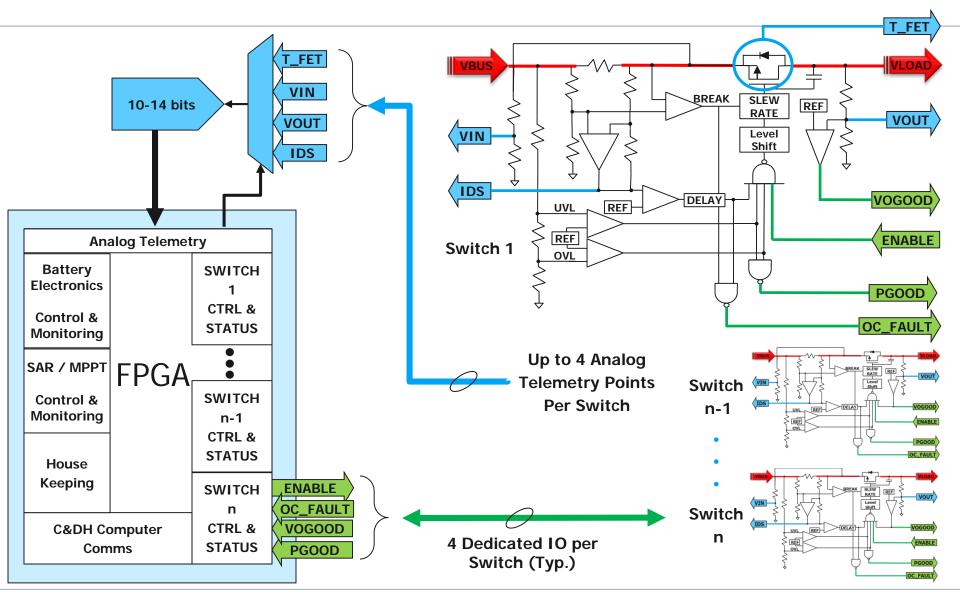







What's the point?

- Addressing Size, Weight, and Power is not only a play for cost effectiveness, it can actually improve overall satellite reliability, as well!
- So, let's look at one approach to addressing SWaP-C in the Satellite power-system...



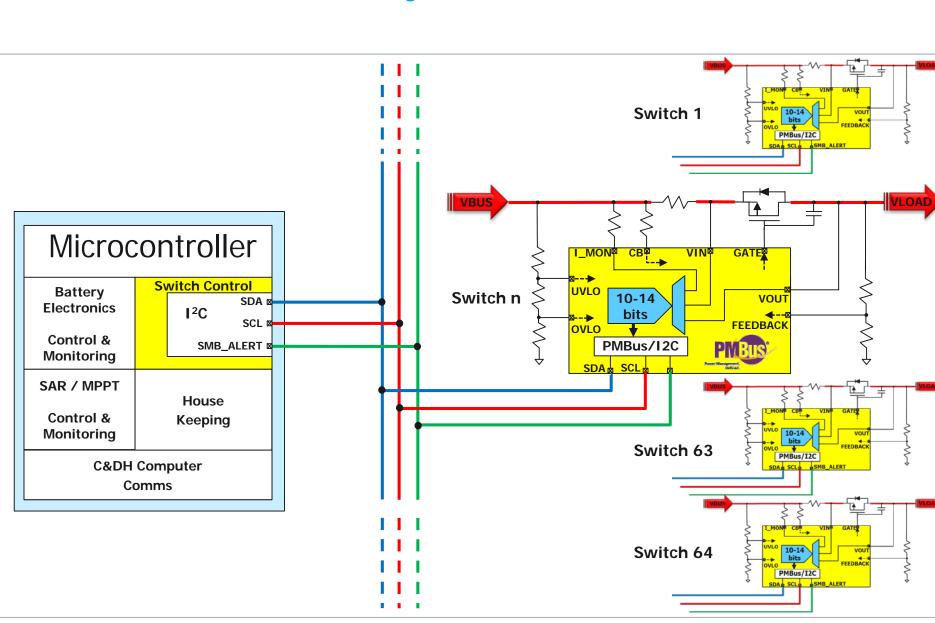
Typical Satellite Electrical Power System

Traditional Power System Control

COBHAM

Today's Power Distribution Architecture Isn't SWaP-C Friendly

Large BOM


- Per Switch:
 - PowerFET, Schottky Diode, Quad Comparator, 1-2 OpAmps, Voltage Reference, Gate Driver, Level Shifters, Logic, plus Passives
- Analog Mux:
 - One 16-Channel Mux per 4 Switches
- A2D Converter:
 - One 10-to-14-bit A2D per 64 analog channels, typ.
- FPGA or ASIC:
 - ~4 IO/switch, plus IO and logic for A2D telemetry processing, housekeeping and interfacing to other systems (e.g. C&DH, BEU, and Solar Array Regulation)
- Not very scalable
 - Large amount of signal routing

Estimate for 64-Channel non-Isolated PDU

Device	QTY	Area (mm ²)	Cost
FPGA (484-CCGA)	1	780	~\$15K
ADC (28-CFP)	4	240	~\$1.5K
AMUX (28-CFP)	16	280	~\$0.8K
Quad Comp (16-SOIC)	64	105	~\$0.7K
Quad OpAmp (16-SOIC)	64	105	~\$0.7K
VREF (SMD-0.5)	8	75	~\$0.5K
Total	157	20.3K	~\$127.4K

Represents major components required to implement a conventional power switch control architecture

New "Smart" Power System Control

COBHAM

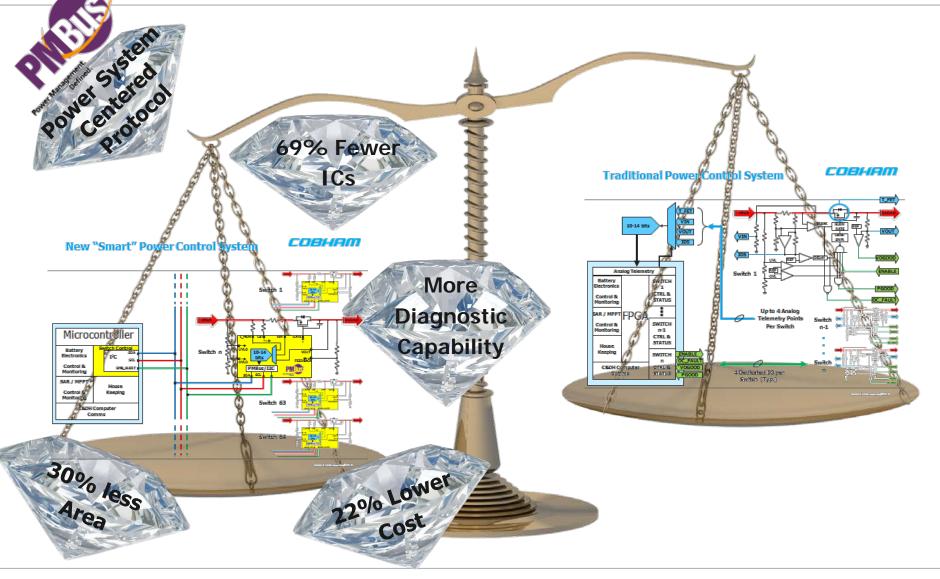
Smart Power Distribution Architecture SWaP-C Friendly

Significant BOM reduction

- Per Switch:
 - One integrated "Smart" eFUSE controller
- No Analog Muxes
- No A2D Converters
- No Voltage Refs
- No Comparators
- No OpAmps
- One Microcontroller with I²C:
 - Full featured uC with I2C, GPIO, Analog Mux, A2D, Precision Current Source, D2A, MIL-STD-1553 can control all Power System Control functions

Scalable to ~64 switches per I2C bus

– Only 3-wires required per bus


Estimate for 64-Channel non-Isolated PDU

CDBHAN

Device	QTY	Area (mm²)	Cost
uController (144-CCGA)	1	210	~\$3.5K
Power Switch Controller with PMBus (48-CFP)	64	230	~\$1.5K
ADC (28-CFP)	4	240	~\$1.5K
AMUX (28-CFP)	16	280	~\$0.8K
Quad Comp (16-SOIC)	64	105	~\$0.7K
Quad OpAmp (16-SOIC)	64	105	~\$0.7K
VREF (SMD-0.5)	8	75	~\$0.5K
Total	65	14.3K	~\$99.5K

• Excludes consideration of elements common to power switch architecture, e.g. PowerFET, Schottky Diodes, Connectors, Passives, etc.

Smart Power System Control Benefits Can Outweigh Traditional Approaches

COBHAM

HOWEVER...

- I²C is best implemented on PCB and up to ~1m bus length
 - Running I2C over a wire harness raises concerns about
 - * Common mode, Isolation, Voltage Fault Tolerance Noise immunity, etc.
- I²C is an open-drain, multi-drop, AND'd serial bus
 - Bus faults can render the bus uncommunicable
 - This can be addressed with a redundant I²C bus, which is common for Microcontrollers and is supported in Cobham's Smart Power Switch Controller
- That said...
- Cobham is working with the PMBus Standards Committee to define PMBus on a different physical layer (like CAN)
- We are seeking participation from Space Power System implementers to help define this Satellite optimized variant of the PMBus standard
- If interested, please contact Tim Meade (info on next slide)

Presented by: Tim.I.meade@cobham.com

That's all Folks!