

Oscillating Heat Pipes for Thermal Management of Li-ion Batteries

Space Power Workshop 2021 April 19-22, 2021

ThermAvant Technologies, LLC Prepared by: Ben Alexander (ben.alexander@thermavant.com)

2508 Paris Road Columbia, MO 65202 www.ThermAvant.com

© 2021 by ThermAvant Technologies, LLC. Published by The Aerospace Corporation with permission.

- Goal: Enable safe, high power discharges (up to 3C) of a 2 kWh Li-ion battery by limiting peak cell temperatures, maintaining <2 °C cell uniformity, and providing resistance to thermal runaway propagation.
- Approach: Embed Oscillating Heat Pipes (OHPs) within the structural heat sinks to increase conductance and reduce overall system mass.
- Result: Experimental results with a 16-cell subunit utilizing simulated cells show steady-state conductance 8-16x higher than solid aluminum and uniformity between cells of around 1 °C. The design was also shown analytically and experimentally to demonstrate passive propagation resistance.

Introduction to Oscillating Heat Pipes

- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

Introduction to OHPs

Structurally Embedded Oscillating Heat Pipes (OHPs)

- OHPs are passive, thermally pumped, two-phase heat transfer devices.
- Principle of Operation:
 - A microchannel circuit within a hermetic envelope is charged with a saturated refrigerant to form a chain of liquid slugs and vapor bubbles.
 - This liquid and vapor is pumped between heat input and heat rejection regions by axial expansion and contraction caused by evaporation and condensation events.

- Used to define OHP configuration
- Viscous Limit
 - $\circ \quad Due \ to \ viscous \ loss, \ temperature \ rise \ will \\ increase \ until \ the \ viscous \ drag \ is \ overcome \ by \ \Delta P \\ to \ create \ fluid \ movement$
- Minimum Startup Limit
 - Incident heat flux must be sufficiently high to create a large enough superheat at the wall to begin nucleation
- Swept Length Limit
 - Nucleation frequency becomes sufficiently high enough to prevent full liquid return
- Vapor inertia limits high temperature operation
 - Vapor generation rate is high enough to allow vapor to penetrate liquid plugs
- Bond number also limits high temperature limit
 - Surface tension decreases and can no longer span the capillary channel, and fluid movement ceases

Reference: B.L. Drolen and C.D. Smoot, "The Performance Limits of Oscillating Heat Pipes: Theory and Validation," Journal of Thermophysics and Heat Transfer, 31, 4, pp. 920-936 (2017)

- Introduction to Oscillating Heat Pipes
- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

• Overall Program Objectives:

- Minimize mass and volume of battery components to achieve specific power and energy targets
- Develop methods for achieving passive thermal runaway propagation resistance utilizing commercial Li-ion cells
- ThermAvant Specific Objective:
 - Demonstrate how high-conductance, embedded OHPs can provide a significant thermal performance benefit while reducing size and weight.

- Design scope limited to the structural heat sink "spines" and headers
- Defined cell-to-spine and spine-to-header interfaces
- 16 x 18650 Li-ion cells per heat sink
 - Two cells considered: 30Q and GA
- Transient boundary condition with a starting temperature of either 25 or 45 °C and rising 10 °C over the course of the discharge

- Introduction to Oscillating Heat Pipes
- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

- Microchannels may be embedded within structural components:
 - Channels CNC machined onto base material (can be routed 3-dimensionally, if needed)
 - Lid hermetically bonded to base material sealing channels within the part
 - Part machined to final profile and channels charged with refrigerant

Microchannels

- The addition of a 2-phase heat transfer mechanism was expected to:
 - Provide significant improvement to heat sink conductance
 - Provide around 10% mass reduction over a solid part of the same exterior dimensions
 - Significantly higher reduction compared to a solid component with comparable thermal properties

- Introduction to Oscillating Heat Pipes
- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

- 30Q vs GA cell performance
- Boundary conditions
 - Determine maximum acceptable operating temperatures for each cell based on maximum cell temperatures
- Evaluate effect of cell contact angle
- Evaluate the OHPs passive propagation resistance
- Heat sink designed to be cooled on both ends to allow for the most compact design

Heat Generating Rates for a 3C Discharge

OHP Heat Sink Design & Analysis

Model Setup

Material and interface properties

- Simplified Model
 - Cells (w/ anisotropic conductivity)
 - o Kapton Tape
 - o Epoxy TIM
 - o Spine
- Spine-to-Header Interface
 - Dry metal interface: 3.2 $W/_{in^2 \circ C}$
 - Gap pad on end: 5.0 $W/_{in^2 \circ C}$

Boundary conditions

- Heat Generation
 - Piecewise-linear approx. of 30Q and GA Cells
- Heat Rejection
 - $h_{eff} \left(5^{W} /_{in^{2} K} \right)$ w/ transient T_{ref}
 - *T_{ref}* of 45-55 °C; reduced as needed to limit max cell temperatures

OHP Heat Sink Design & Analysis Transient Analysis – Overall Thermal Gradients

- 45-55 °C transient boundary temperature results in excessive cell temperature, primarily due to gradients within the cells
- GA and 30Q cells produce a 2 to 4 °C gradient, respectively, across the interface with the header
- Maximum allowable transient boundary temperatures
 - GA Cell: 28-38 °C
 - **30Q Cell:** 37-47 °C

0

 Uniformity of peak cell wall temperatures predicted to be 1-2 °C

 Additional envelope material sinks more heat from cells

Results shown are for GA cells with a boundary temperate varying from 28 to 38 °C.

• The thermal penalty of going to a 60° contact angle (vs 90°) can be offset by integrating the header into the spine

90°

60°

(6) Temperature - Celsius

Bound

- Shifts the thermal interface into a low flux region between adjacent spines
- Allows for around 20% mass savings with no thermal penalty

from 28 to 3	2-5 °C gr across int												
fre	Maximum Cell Temperatures (°C)										Max Mid-Plane Temperature (°C)	Temperature Spread (°C)	
	GA Cell, 90 degree		56.7	57.4	57.5	57.5	57.5	57.5	57.2	55.9		1.6	
	contact angle	55.9	57.2	57.5	57.5	57.5	57.5	57.4	56.7		57.5		
			60.1	60.7	60.0	60.0	60.0	60.7	60.6	50.0			
	GA Cell, 60 degree		60.1	60.7	60.8	60.8	60.8	60.7	60.6	58.9	60.8	1.9	
	contact angle	58.9	60.6	60.8	60.8	60.8	60.8	60.7	60.1				

OHP Heat Sink Design & Analysis

Thermal Runaway Analysis – Worst Case Scenario

This scenario represents the worst case condition in which the OHP is *completely non-functioning* during the *entire* thermal runaway and cooldown event.

In this case, the only cooling path within the heat sink is the aluminum envelope of the OHP.

- Introduction to Oscillating Heat Pipes
- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

- Tested at a range of powers representative of the cell heat loads
 - Tests allowed to reach equilibrium at each power level
- Baseline test with solid aluminum heat sink
 - Produces large gradients across heat sink and between central and outermost cells
- Performance verification with OHP heat sink
 - Two-phase cooling produces extremely low gradients between cells (evaporators), and much lower gradients across the heat sink (evaporator to condenser).

- OHP tested at powers between 36 W (minimum 30Q rate) and 104 W (120% of maximum GA rate)
- OHP tested with boundary temperatures (OHP surface) between 23.7-48.9 °C
- OHP tested in horizontal (analogous to zero-g) and vertical orientations

			36 \	N	57 \	N	88 \	N	104 W	
	Test No.	Orient.	Boundary Temp (°C)	ΔТ _{ОНР} (°С)	Boundary Temp (°C)	ΔΤ _{ΟΗΡ} (°C)	Boundary Temp (°C)	∆ <i>T_{OHP}</i> (°C)	Boundary Temp (°C)	∆T _{OHP} (°C)
Overall	B1	Llovia	42.0	3.3	44.4	3.8	47.3	5.0	48.9	6.1
Spine dT (<i>3-5</i> ° <i>C</i>	B2	Horiz.	23.8	3.5	26.5	4.2	30.9	5.1	33.1	5.7
predicted)	B3	Vort	41.8	3.5	43.8	4.5	47.2	6.1	48.6	7.4
	B4	Vert.	23.7	3.6	26.4	4.4	30.9	5.7	33.1	6.5
	Test No.	Orient.	Boundary Temp (°C)	ΔT_{cells} (°C)	Boundary Temp (°C)	ΔT_{cells} (°C)	Boundary Temp (°C)	ΔT_{cells} (°C)	Boundary Temp (°C)	ΔT_{cells} (°C)
Cell-to-Cell	B1	Horiz.	42.0	1.5	44.4	1.2	47.3	1.4	48.9	1.8
dT (<i>1-2</i> ° <i>C</i>	B2	HUHZ.	23.8	1.8	26.5	1.7	30.9	1.4	33.1	1.5
predicted)	B3	Vert.	41.8	1.6	43.8	1.4	47.2	1.8	48.6	2.5
	B4		23.7	1.4	26.4	1.4	30.9	1.3	33.1	1.4

- OHP conductance varies with temperature and power
- Low sensitivity to gravity and boundary temperature
- At boundary temperatures above 50 °C, the device encounters the Swept Length Limit resulting in a decrease in conductance
 - Conductance is restored once temperature is reduced.

- Cooling just one end of the OHP shifts the Swept Length Curve far left, leaving little overlap with the design space.
- Design-dependent characteristic measures can be taken to better accommodate single-ended cooling, where required.
 - Various trade-offs (e.g., size, weight, etc.) may apply

- OHP continues to experience stable operation over the entire application design space
- With temperatures above 50
 [°]C, OHP transport capacity is
 reduced (must run at lower
 power) and operation
 becomes less stable
- This is also a design-dependent characteristic
 - Alternative designs can accommodate higher temperature operation; again, trade-offs likely apply

Design Space for High-Power Battery

- Introduction to Oscillating Heat Pipes
- Problem Background
- The Proposed Solution
- Design & Analysis Results
- Experimental Results
- Conclusions & Questions

Conclusions from Modeling

- The OHP spine is predicted to achieve the uniformity targets with the cell-to-cell dT being dominated by the cells nearest the ends
 - Enabled by the two-phase nature of the OHP
- The dT within the spine (3-5 °C) is around half of the dT expected within each cell (5-10 °C)
 - Cell internals and interfaces are primary contributors to overall gradient.
- Use of an integrated header provides mass savings and temperature reduction, offsetting the thermal impact of using a 60° cell contact angle. (Trades with machining complexity.)
- OHP heat sink predicted to provide around 2x the margin of a solid aluminum heat sink during a thermal runaway event
 - High conductance spine carries heat to cells throughout the spine, reducing the heat load on neighboring cells.

- *Experimental results match the modeling predictions* for both overall heat sink gradient as well as cell-to-cell uniformity
- Results show very little sensitivity to boundary temperatures in the 20-45 °C range and to gravitational orientation
- Testing shows the heat sink to meet performance targets at boundary temperatures less than 50 °C
 - Performance drops significantly above this temperature
- Testing confirms the requirement for cooling of both ends of the spine
- Boundary temperature and dual-sided cooling requirements are designdependent – alternative OHP designs may be conceived which allow for higher temperature operation and single-sided cooling.
 - Boundary conditions are a key input to the OHP design process
- Thermal Runaway testing at NASA-JSC verified propagation resistance of this battery design

Dr. Eric Darcy and team at NASA for their support and on-going efforts to characterize and verify these OHPs for thermal management of Li-ion batteries.

Dr. Paul Coman at Univ. of South Carolina for his excellent modeling contributions which served as the starting point for our analysis.

QUESTIONS?