Performance Comparison of III-V//Si Tandem Solar Cells in the Three -Terminal Configuration

Kaitlyn VanSant^{1,2}

Emily Warren³, John Geisz³, Talysa Klein³, Michael Rienäcker⁴, Henning Schulte-Huxel⁴, Robby Peibst⁴, Lyndsey McMillon-Brown⁵, Timothy J Peshek⁵, Adele C. Tamboli^{2,3}

¹NASA Postdoctoral Program, John H. Glenn Research Center
²Colorado School of Mines, Golden, CO, USA
³National Renewable Energy Laboratory (NREL), Golden, CO 80401
⁴Institute for Solar Energy Research in Hamelin (ISFH), 31860 Emmerthal, Germany
⁵John H. Glenn Research Center, The National Aeronautics and Space Administration (NASA)

© 2021 by the National Postdoc Program Fellowship. Published by The Aerospace Corporation with permission

Motivation for 3T Research

Device simulations suggest that III-V//Si 3T devices could provide a promising path towards >30% 1-sun efficiency.¹

3T advantages:

- No need for intermediate grids
- Robust to spectral variations
- IBC Si bottom cell provides an additional back contact which allows:
 - Current extraction when Si bottom cell produces more photocurrent
 - Current injection when top cell produces more photocurrent
- 1. Emily Warren et al., Sustainable Energy & Fuels 2, 1141 (2018)
- 2. Emily Warren, et al,. ACS Energy Letters, 5, 1233 1242 (2020).

Simulated 3T performance for GaAs//Si (in Common Z - CZ)

3T Cell Design: TCA-Bonded Superstrate Structure

- Glass provides mechanical support for top cell during processing
- Textured Si interdigitated-back contact (IBC) cells provided by ISFH²
- Transparent conductive adhesive (TCA) used to bond sub-cells together³

Simplified schematic for III-V/t/nuIBC Si

M. Rienäcker, et al., *Progress in PV* 27 (2019).
Klein, T. R. *et al. ACS Appl. Mater. Interfaces* 10 (2018).

Top Cell Limiting Case: 3T GaInP//Si

3T power contour map:

- 2T P_{max} is determined by measuring the 2T JV curve, prior to mapping the power
- 3T P_{max} is calculated from contour map

Top Cell Limiting Case: 3T GaInP//Si (cont.)

Bottom Cell Limiting Case: 3T GaAs//Si

3T power contour map:

- The difference between the 2T P_{max} and the 3T P_{max} is significantly greater than that seen in the case of GaInP//Si
- This is due to considerable current mis-match between the sub-cells

 $3T P_{max}$ is 9.2 mW/cm² higher than the $2T P_{max}$

Bottom Cell Limiting Case: 3T GaAs//Si (cont.)

Key Takeaway for 3T GaAs//Si: 3T configuration enables the collection of additional photocurrent generated by the GaAs top cell

Series resistance issues between the **MgF**₂ frontside ARC sub-cells **Glass**

Optimizations to Attain Simulated 3T Performance

- 3T superstrate measurement artifact
- Co-optimize optical and electrical properties by improving:
 - Lamination conditions

• Eliminate:

•

- TCA percent coverage
- Add a frontside anti-reflective coating (ARC)
- Substitute ITO for IZO at the back of the top cell

Summary

3T tandem cells are capable of collecting additional photocurrent generated from current mis-matched sub-cells

Tandem Cell	2T efficiency	3T efficiency
GalnP//Si	20.8	21.3
GaAs//Si	12.1	21.3

Additional processing improvements should enable 3T III-V//Si cells to achieve efficiencies above 30%

2021 Space Power Workshop

NREL Staff

Adele Tamboli* **Emily Warren** Eric Toberer* John Geisz Talysa Klein Steve Johnston Paul Stradins **Bill Nemeth** Maikel van Hest Waldo Olavarria Michelle Young

Collaborators

Michael Rienäcker (ISFH) Henning Schulte-Huxel (ISFH) Robby Peibst (ISFH)

Lyndsey McMillon-Brown (NASA) Tim Peshek (NASA)

Thank You

*Joint appointment: NREL and Colorado School of Mines

Backup slides

3T Power Plot – with data points

- The n-type Si contact is connected to both SMUs on the XT-10
 - III-V front contact SMU #1
 - P-type back contact SMU #0 (Hi)
- At each V_{TZ} increment along the y-axis, V_{RZ} is set at values increasing from -1 to 1 and I_{TZ} and I_{RZ} are measured at each step
- Raw data is:
 - * J_{TZ} as a function of both V_{TZ} and V_{RZ}
 - J_{RZ} as a function of both V_{TZ} and V_{RZ}
- Power on the contour plot is calculated from:

$$P_{RZ} = J_{RZ} \times V_{RZ} \qquad P_{TZ} = J_{TZ} \times V_{TZ}$$
$$P_{TOT} = J_{RZ} + P_{TZ}$$

Circuit

N

CZ GalnP/t/nulBC

7

3T Superstrate Cell Fabrication Process for GaInP//Si

