Thermo Fisher S C I E N T I F I C

3D Imaging Characterizations of Li-ion Battery via X-ray Microtomography and Electron Microscope

Zhao Liu, PhD

Market Development Manager Thermo Fisher Scientific

The world leader in serving science

Design vs. Actual Performance

- Many interactions, at different length scales, all impacting the battery performance
- Understand the structure and performance correlation is critical

Multiscale Imaging Analysis Approach

2D Imaging

- Characterization methods for 3D imaging analysis
- How 3D imaging analysis help battery research?

Heliscan microCT Analysis on Battery Cell

Non-destructive 3D imaging method

ThermoFisher

SCIEN

3D Reconstruction of a 18650 Cell

Thermo Fisher

X (Y) – Z Plane

X – Y Plane

Sample courtesy: Electrochemical Innovation Lab, UCL

Tracing the current collector for quantification

Fresh Cycled

Collector shape change is quantified by digitally correlating the position of the spiral in the fresh and cycled battery and plotting the distance from the center versus the rotation angle α

Detailed position at each point in the cell can be further explored and modeling for failure analysis and structural optimization

Thermo Fisher

Sample courtesy: Electrochemical Innovation Lab, UCL

Challenges of the microCT for Battery Imaging

Thermo Fi

- Not enough resolution to see finestructure at electrode and particle level (e.g. cracks)
- Lack of chemical and crystallographic information

A DualBeam (FIB-SEM) is defined by of two primary components...

Scanning Electron Microscope for imaging

Focused Ion Beam for sample modification (milling)

The sample and stage are maneuvered beneath the beams to optimize imaging and milling

The DualBeam in Action

FIB

Thermo Fisher

SEM

010

DualBeam Technologies

- Different ion sources (laser) to cover wide number of applications in different materials system
- Increasing volume for analysis: from Ga+-FIB, P-FIB to Laser PFIB

DualBeam Analysis on Electrode via 2D and 3D

3D reconstruction of battery electrode

hermo

X	Microstructural Analysis	2D Imaging	3D Imaging	
	Volume Fraction	Yes	Yes	
	Surface Area	Limited	Yes	
T A	Particle Size Distribution	Limited	Yes	
	Connectivity	No	Yes	
	Tortuosity	No	Yes	

3D imaging provides more information than 2D imaging for structural quantification, which is crucial for understanding the structure-performance correlation

3D Imaging Analysis on Different Battery Components

Laser-PFIB: graphite anode

PFIB: NMC cathode

Ga-FIB: separator

Courtesy: Devin Wu, Remco Geurts, Stephen Randolph ,Bartlomiej Winiarski, Ken Wu, Chenge Jiao Thermo Fisher Scientific

3D EDS Analysis of a Si-C Anode

- High-res 3D EDS on SiO/C anode at low kV to enable 4phase identification in 3D volume
 - Not achievable via SE/BSE imaging due to low contrast among phases
- Identification of each phase provides critical information to understand structureperformance correlation in the battery
 - Phase distribution

•

- CMC coating on SiO
- Carbon/SiO ratio optimization

TOF-SIMS Analysis of ⁷Li⁺ Distribution in 3D

TOF SIMS/Helios: Lithium distribution in a lithium-ion battery cathode

Thermo Fisher

- TOF-SIMS in DualBeam enables the measurement of 3D distribution of the lithium ions within the electrode
 - Effective in mechanism study, e.g. Li distribution change at different cycling stage

3D Analysis Approach of a Single Particle

- Imaging was done at different "depths" in the particle to see how the structure changes from outside to inside of the particle
- EBSD analysis for primary particle grain orientation

Correlative Multiscale Imaging across Tools

Thermo Fisher

Summary

3D imaging techniques provides an approach to in-depth understand battery structure-performance correlations

Heliscan microCT allows for quantitatively study of the battery structure evolution at the cell levels

DualBeam techniques enables 3D characterization of representative electrode volume and particle analysis for both morphology quantification, chemical and crystallographic analysis

Correlative imaging workflow enable analysis across multiple length scale in 3D

Thank You

Email: zhao.liu@thermofisher.com

Thermofisher.com/battery-research

© 2021 by Thermo Fisher Scientific, published by The Aerospace Corporation with permission