ULTRA LIGHTWEIGHT PEROVSKITE SOLAR CELLS FOR SPACE APPLICATIONS

Stepan Demchyshyn

© 2021 by Johannes Kepler University. Published by The Aerospace Corporation with permission

Image from Golec MJ. Another Science Fiction: Advertising the Space Race 1957–1962 by Megan Prelinger.

BACKGROUND

JOHANNES KEPLER UNIVERSITÄT LINZ

PEROVSKITES

- Ease of processing (solution techniques)
- Defect tolerance (large carrier diffusion, suppressed recombination)
- Low cost
- High efficiency

ULTRA LIGHTWEIGHT PVSK PV

Kaltenbrunner M, et al. 2015

PEROVSKITES IN SPACE

- Stability to proton & electron radiation
- γ-ray hardness
- Fast neutron resilience
- 2 stratospheric missions (EU & China)
- Low intensity low temperature (LILT) study

Brown et al.

LILT study

DEVICE ARCHITECTURE

LOW INTENSITY LOW TEMPERATURE

7

SAMPLE COOLING

8

- 10⁻⁶-10⁻⁷ Torr
- No considerable degradation
- 6 cycles (20 h)

LOW EARTH ORBIT (LEO)

Banik J, *et al.*, On-orbit validation of the roll-out solar array. 2018 IEEE Aerospace Conference

Jenkins PP, *et al.*, Initial results from the second forward technology solar cell experiment. 2010, IEEE Photovoltaic Specialists

- Based on information available from previous missions (ISS, ROSA, Nimbus 2, etc.)
- AM0, vacuum
- $65 \rightarrow -100 \rightarrow 65 \ ^{\circ}C$
- 6.5 satellite day/night cycles

OUTLOOK: MECHANICAL STABILITY

- Mechanically robust
- Thin structures small bending radius (sin folds λ ~100-300 μm)
- Ideal for deployable structures

Umbrella type

Foldable structures

Kaltenbrunner et al., 2015¹²

Improved performance

(~17-18%)

Radiation testing

Larger scale (cm²)

Powering more

ACKNOWLEDGEMENT

Martin Kaltenbrunner

Bekele Heilegnaw

Lukas Lehner

Christoph Putz

JOHANNES KEPLER UNIVERSITÄT LINZ

Harry Atwater

Samuel Loke

Michael Kelzenberg

Jonathan Grandidier

FINANCIAL SUPPORT

Marshallplan-Jubiläumsstiftung Austrian Marshall Plan Foundation Fostering Transatlantic Excellence

European Research Council Established by the European Commission

Caltech Space Solar Power Project

SOLAR CELLS INSPIRATION

