

Engineered for Science

Characterizing UV Degradation of Silicone in Solar Cells: Lessons Learned from the Parker Solar Probe and the Game Changing Development for Extreme Environments Solar Power Programs

Matthew J Schurman, newForge Technologies, matt@newforgetechnologies.com Richard A Stall, newForge Technologies, rick@newforgetechnologies.com Andrew Gerger, Applied Physics Lab, Andrew.Gerger@jhuapl.edu

newForge would like to thank the Applied Physics Lab (APL), NASA Glenn, and Dr. Edward Gaddy of APL for their financial support and encouragement for this work.

Summary of our Work

- newForge has been studying the UV degradation of silicones (both transparent and opaque) used in space based, solar cell and panel assembly for over 8 years.
- This work was initially done in conjunction with the Applied Physics Lab (APL) in support of the Parker Solar Probe (PSP) program.
- Further work has been done in support of the Transformational Array (TFA) Program to advance solar concentrator systems for spacecraft.
- Our work has focused on optical transparency loss, contamination and outgassing, and the mitigation of these effects.

A Unique Approach to UV Degradation Studies

- Typically, UV degradation studies are done using lamp based sources for short (< 1,000 hour) durations
- Lamps are expensive, short lived (< 400 hours), and drift in intensity and wavelength over time
- newForge uses Light Emitting Diodes (LEDs), which have long life (> 10,000 hours) and low drift
- newForge has conducted numerous studies that have lasted for over 5,000 hours on flight solar cells using fully automated vacuum systems

A Summary of UV Degradation of Silicones

UV Degradation of Silicone

- Silicones decompose when subjected to UV and HEAT
- Decomposing silicones outgas and (in the case of transparent silicones) become less transparent
- Optical losses due to silicone darkening are more significant than is broadly assumed^{*}

*S. W. Gelb, L. J. Goldhammer, and D. X. Kerola, In-Orbit Performance of Hughes HS 376 Solar Arrays, Proceedings of the 18th IEEE Photovoltaics Specialist Conference, Las Vegas, 1985, pp. 362-367.

Sample Prior to Exposure

Sample Post Exposure

- The photos above, taken with 365 nm light on the CICs and with a narrow band filter at 570 nm on the camera, show the strong yellow-green fluorescence on heavily degraded CICs
- The center "CIC" has no coverglass and no transparent silicone adhesive.

Adsorbed Outgas Products (AOP)

- Adsorbed Outgas Products

 (AOP), evolved from silicone
 degradation under UV exposure,
 condensed on a cold surface
- The AOP begin to fluoresce under UV shortly after deposition, indicating that these materials ALSO decompose under UV
- Optical losses of these AOPs on reflective surfaces are HIGH

Observed Optical Losses

- Early studies by other groups indicated losses to follow an exponential decay that self terminates ~ 2%
- newForge test data AND <u>PSP Flight</u>
 <u>DATA</u> CLEARLY shows this is NOT the case.
- Most studies end after a few hundred hours and do not have the stability of our LED-based instrumentation and miss the longer-term degradation
- Optical losses are HIGHER for SHORTER Wavelengths

Summary of the UV Degradation Problem

- Silicones decompose when exposed to UV light.
- HIGHER temperature and UV intensity lead to FASTER degradation.
- As silicones degrade, they outgas, and these outgas products in turn will degrade under UV exposure.
- Transparent silicones lose transparency as the silicone degrades under UV exposure.

Preconditioning of Silicones

History Dependence of Degradation Rates

- During our initial studies of DC 93-500, we observed a wide range of UV degradation rates and outgassing rates for the same temperature and UV Intensity.
- Closer study of the data revealed that the degradation rate is ALSO dependent on what **prior exposure** the sample received.
- By varying the initial exposure conditions of the silicone, we could **INCREASE** or **DECREASE** the long term degradation rates of the silicone by an up to a factor of 3.

Anatomy of Silicone UV Degradation Rates

Exposure conditions:

- ~ 1 AM0 UV Equivalent suns
- CICs held at 75° C
- 1. Initial fast optical loss
- 2. Loss begins to slow
- 3. Loss continues to slow

Can we reduce the longterm degradation rate?

- newForge has developed a method to precondition CURED silicone to REDUCE the outgassing and the LONG TERM optical loss
- Preconditioning requires:
 - High Temperatures (> 100°C)
 - UV intensity ~ I UV-equivalent suns
 - Vacuum (< 10⁻⁵ torr)
 - Exposure time

- Data from the initial 1,000 hours of the PSP while under GEO-like conditions
- Both PSP Panels were preconditioned using newForge techniques and equipment
- Model was derived from newForge database of degradation rates and used by APL to adjust the mission flight to, and around, the sun
- Even with preconditioning, silicone transparency degrades more than 2%

Transformational Array and SCV2-2590

Transformational Array Program (TFA)

- Project funded by NASA and led by APL to use concentrators on space PV panels for use in flying to the outer planets
- TFA concentrators use the latest multi-junction solar cells from SolAero, combined with reflective concentrators
- The transparent silicone chosen was NUSIL SCV2-2590.
- newForge studied the outgassing and transparency loss under UV exposure

SCV2-2590 vs DC-93500

- Solid Lines are newForge lab data
- Green squares are flight data from the Parker Solar Probe during its initial flight under GEO-like conditions
- SCV2 was preconditioned under different conditions than DC 93-500

Why UV Degradation of Silicones is a BIGGER problem Going Forward

Advanced Cells are More Sensitive to UV Degradation

Big Losses for Concentrators

- Higher CIC Temperature and UV intensity, with cold mirrors of concentrator, will drive higher degradation
- AOP from ALL silicones will deposit on cold mirrors
- Both SCATTERING and ABSORPTION losses from the AOP on the mirror will reduce system power

- The optical loss of transparent silicones due to UV degradation can vary considerably depending on the type of silicone used.
- Preconditioning of all silicones can significantly improve the long term optical losses AND the outgassing of the silicone degradation products.
- Next generation 4+ junction solar cells and concentrator systems are more sensitive to UV degradation of silicone than 3J solar cells