### NASA Double Asteroid Redirect Test (DART) ROSA Solar Array

Peter Barker, Deployable Space Systems, Inc.



a Redwire Company



2021 Space Power Workshop

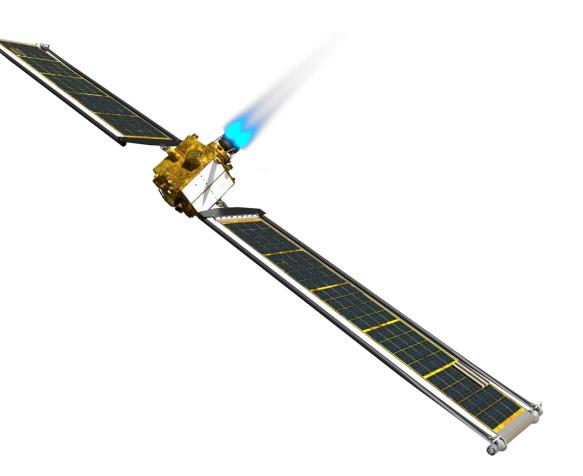


© 2021 by Deployable Space Systems, Inc. Published by The Aerospace Corporation with permission

# Outline

### **DART Mission Overview**

### DART SEP System


#### **DART ROSA Solar Array Design**

- Stowed and Deployed Configurations
- Mechanical and Electrical Subsystems

#### **DART ROSA Protoflight Hardware**

DART ROSA Protoflight Testing & Results

Summary







# **DART Mission Overview**

### NASA DOUBLE ASTEROID REDIRECT TEST (DART) ROSA SOLAR ARRAY

#### NASA's DART mission: First-ever spacecraft to demonstrate asteroid deflection by kinetic impactor on an asteroid target

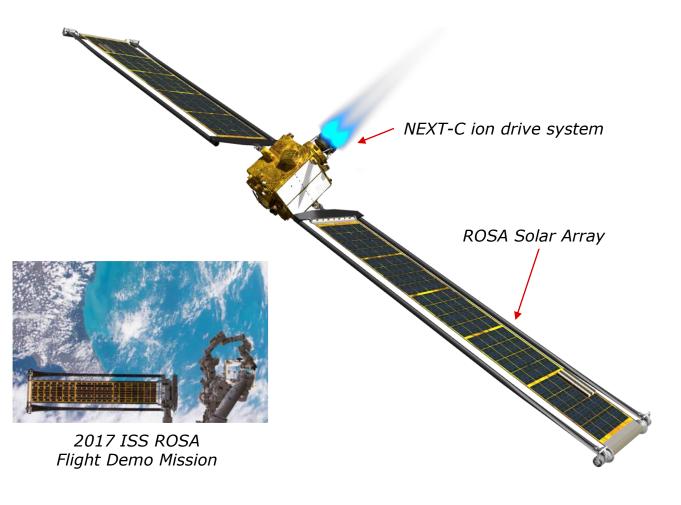
- Involves striking an asteroid to shift its orbit and deflect it from hitting Earth
- Mission is a critical step in understanding and demonstrating one of the approaches that could be used to protect Earth

## DSS providing ROSA solar arrays under subcontract to JHU / APL

Launch window scheduled for November 24, 2021 – February 15, 2022








# **DART SEP System**

ROSA & NASA'S NEXT-C

DART SEP system comprised of DSS's ROSA solar array and NASA's Evolutionary Xenon Thruster–Commercial (NEXT-C) ion drive system

- Over significant time and interplanetary distances, ROSA and NASA's NEXT-C drive system has the capability of reaching up to 324,000 kilometers per hour, more than five times faster than the speedy Voyager 1 probe
- ROSA solar array provides more than 6.6 kilowatts power at BOL
- DART ROSA configuration adapted from the successful ISS ROSA flight demonstration mission in June 2017, increased length and width







### **DART ROSA Major Driving Requirements**

### **KEY REQUIREMENTS**

BOL Power: >6.6kW

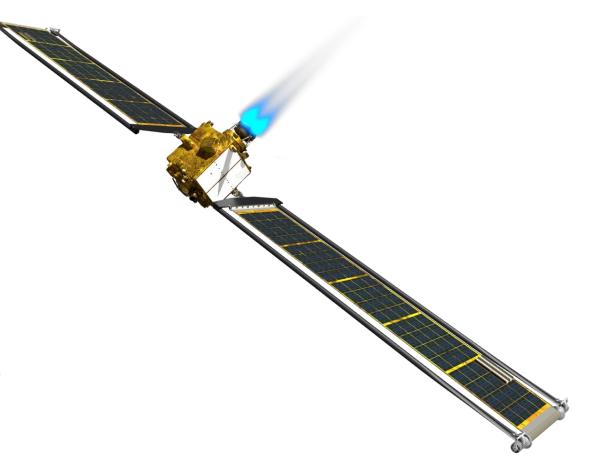
Mass: >100 W/kg

**Two Power Segments** 

100V SEP segment and 60V spacecraft segment

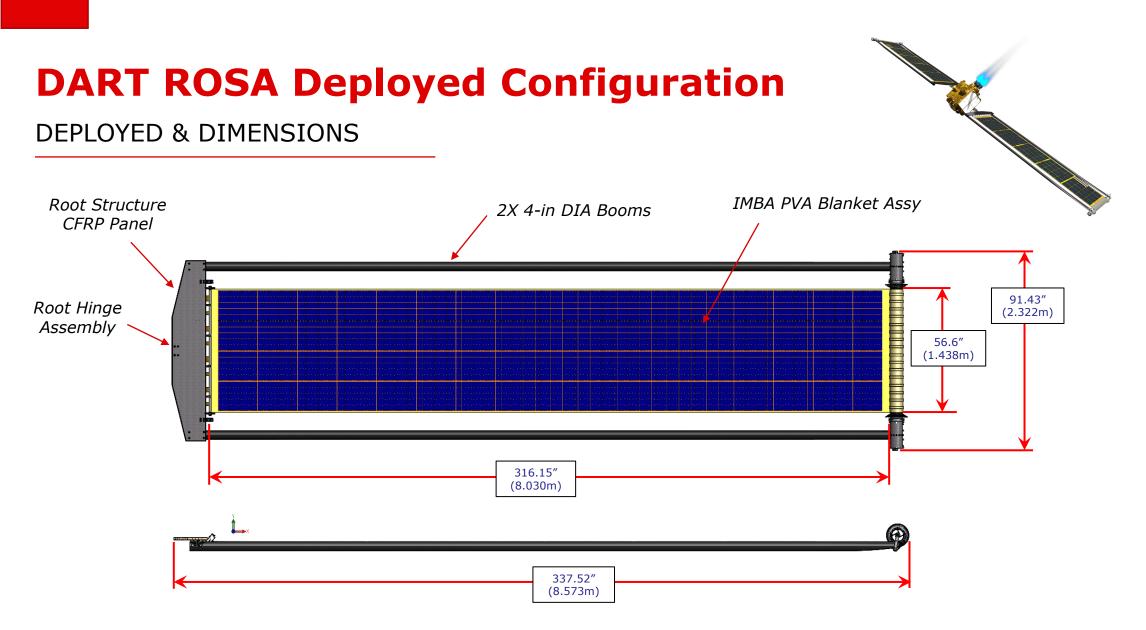
**Deployed Frequency:** >0.25Hz

Stowed Frequency: >50Hz


Launch Loads

- Design limit loads: 20G (X,Y,Z)
- Sine vibration loads: 18G axial (Z) & 8G lateral (X,Y)
- Random vibration loads: 14.1 gRMS (X,Y,Z)

#### Deployment torque margin: >3:1


Functional Deployment at -65C and +52C Temperature Extremes

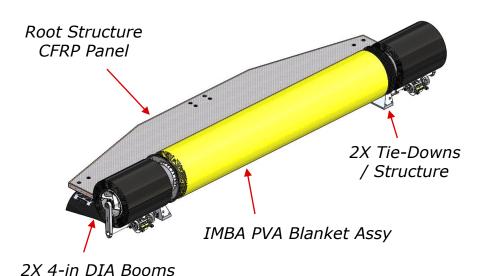
Compatibility and operability in a SEP plasma environment

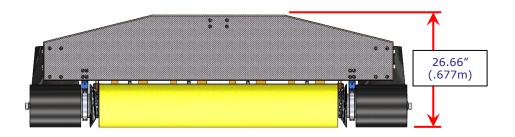








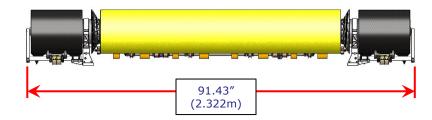



## **DART ROSA Stowed Configuration**

13.06" (.331m)

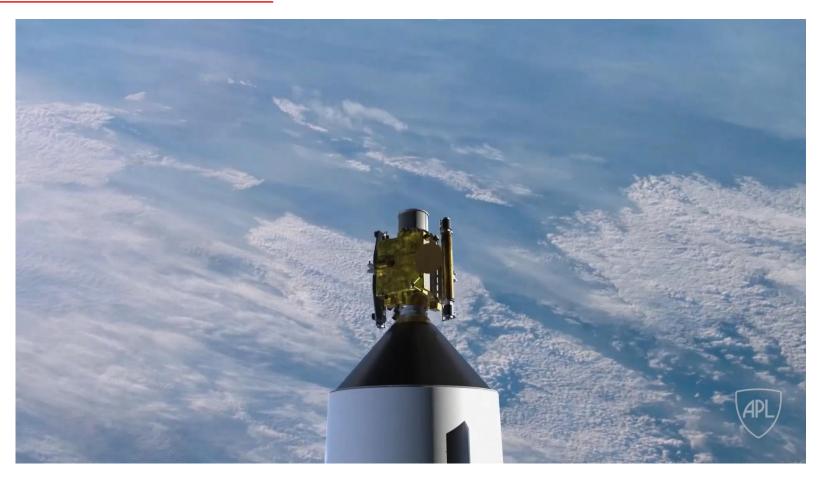
### STOWED & DIMENSIONS








VIRE


26.66″ (.677m)





### **DART ROSA Solar Array Deployment Sequence**

### DEPLOYMENT ANIMATION







## **DART ROSA IMBA PVA Blanket Assembly**

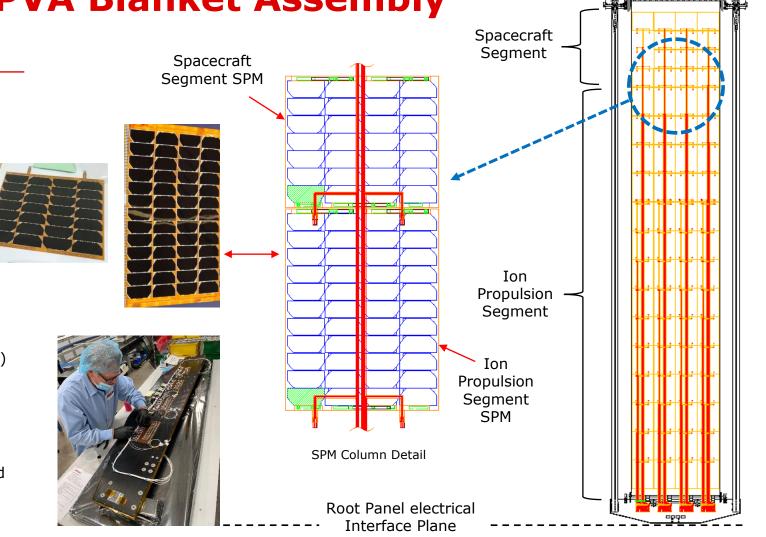
### IMBA CONFIGURATION

#### SPM tile configuration on IMBA

• 4 X 18 orthogonal matrix of SPM's

#### Two SPM configurations employed

- Ion Propulsion Segment SPM's
  - 4 X 11 SolAero ZTJ CIC Matrix (100V)
- Spacecraft Segment SPM's
  - 4 X 7 SolAero ZTJ CIC Matrix (60V)


#### Electrical harnessing (backside)

- Flex harnessing runs down each SPM column (4)
- Individual strings routed to blocking diodes / diode boards mounted on root structure

#### **Electrical interface / connectors**

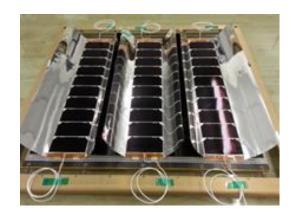
VIRE

 Discrete circuit harness routed from diode board along root structure to interface connectors



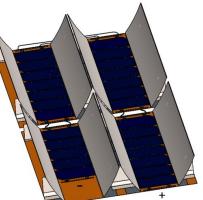


# **Transformational Solar Array (TSA) Experiment**


### TSA ENABLES EXTREME ENVIRONMENTS MISSIONS

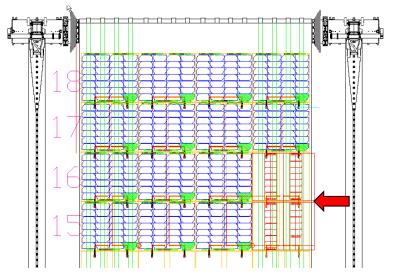
# Two SPM positions of the DART ROSA have been configured to demonstrate the Transformational Solar Array (TSA)

TSA enables NASA's extreme environments missions


### TSA SPM is comprised very-high-efficiency SolAero IMM 4J PVA and DSS's FACT reflective concentrator technology

• Dedicated harnessing to assess electrical performance during mission




TSA-FACT-DART SPM

Backside

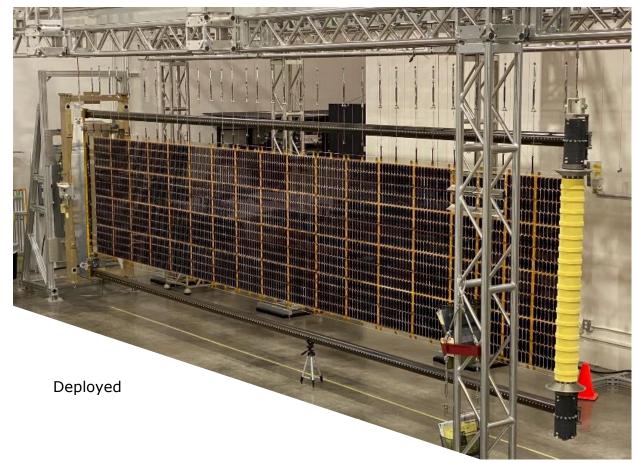




Frontside



TSA-FACT Concentrator Module Location on DART ROSA Blanket









## **DART ROSA Solar Array Protoflight Hardware**

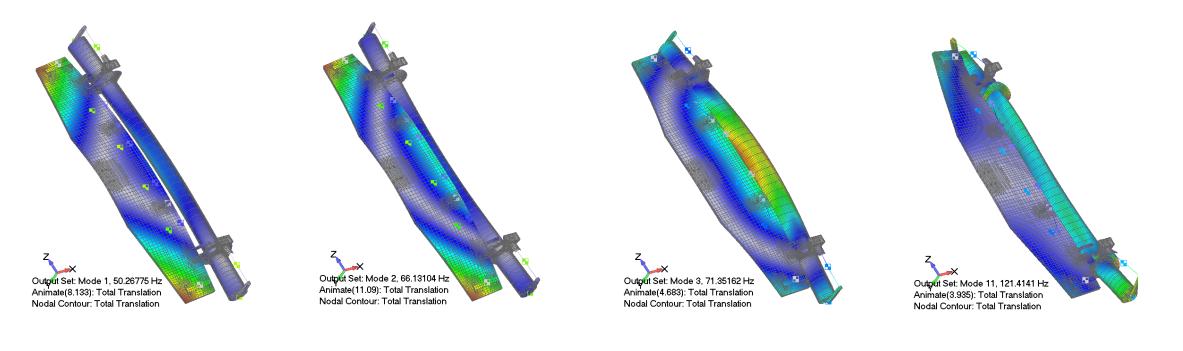
### DEPLOYED & STOWED





Stowed






## **Stowed Stiffness / Frequency**

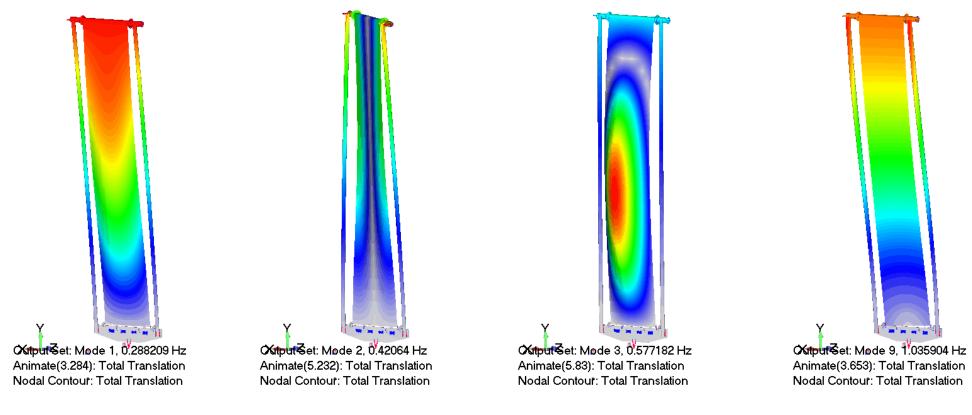
### 50.3 HZ STOWED FIRST MODE FREQUENCY

Predicted 50.3Hz first natural frequency compliant to requirement of 50Hz

First mode with significant S/C Z axis mass participation does not occur until > 120Hz








### **Deployed Stiffness / Frequency**

### 0.29HZ DEPLOYED FIRST MODE FREQUENCY

WIRE

Predicted 0.29Hz first natural frequency compliant to requirement of 0.25Hz





# **DART ROSA Wing-Level Protoflight Test Sequence**

### PROTOFLIGHT TEST SEQUENCE SUBJECTED TO BOTH WINGS

- Pre-test / initial inspection and electrical performance verification, then Stowage
- Ambient functional deployment
- Inspection and electrical performance verification, then Stowage
- Random vibration
- Sine vibration
- Ambient functional deployment
- Inspection and electrical performance verification, then Stowage
- Stowed configuration thermal cycle (-75C to +52C)
- Cold temperature functional deployment (-65C)
- Inspection and electrical performance verification, then Stowage
- Hot temperature functional deployment (+52C)
- Post-test / final inspection and electrical performance verification, then Stowage



## **DART ROSA Solar Array Functional Deployment**

3X SPEED SHOWN - COMPLETE DEPLOYMENT ACHIEVED WITHIN 5-MINUTES







### **DART ROSA Solar Array Random and Sine Vibration**

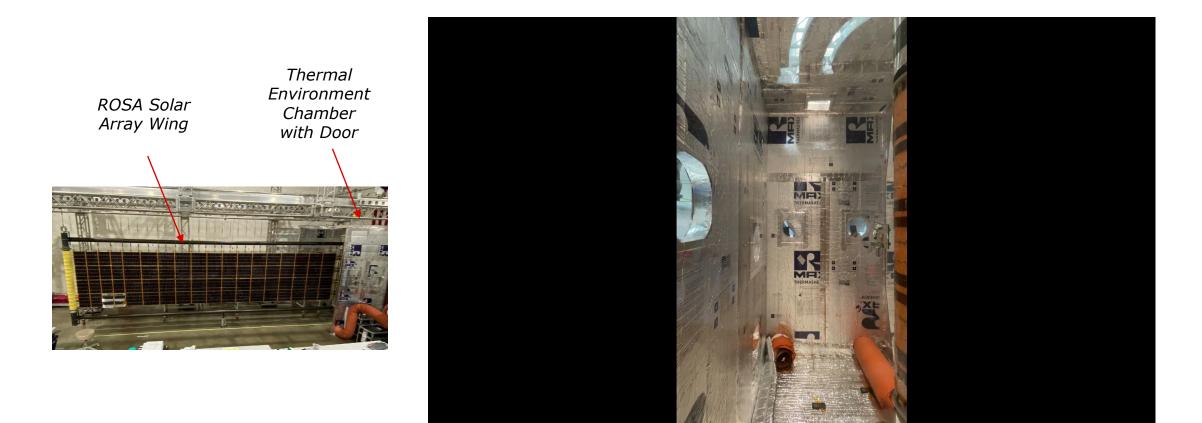
FULL WING-LEVEL & COMPONENT LEVEL. SINE: 18G (Z) & 8G (X,Y) & RANDOM: 14.1 GRMS (X,Y,Z)





Boom & IMBA Component-level










### **DART ROSA Solar Array Cold & Hot Functional Deployment**

6-THERMAL CYCLES BETWEEN -75C & +52C THEN DEPLOYMENT AT -65C & +52C TEMPERATURE EXTREMES







# **DART ROSA Solar Array Test Results Summary**

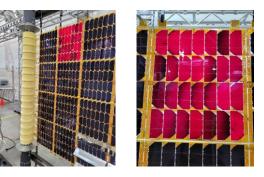
BOTH DART ROSA WINGS SUCCESSFULLY PASSED THE PROTOFLIGHT TEST CAMPAIGN

#### No structural or electrical damage / degradation

Only 3-cracked solar cells in entire array

No measurable degradation in electrical performance

Structural and electrical survivability validated to very high quasi-static, random and sine vibration loads


Repeated functional deployments validated in ambient, cold and hot temperature environments

Deployment torque margins >3:1 validated in ambient, cold and hot temperature environments

Dark IV Mapping & Characterization

| U<br>M<br>134 N | SID 1<br>Di cole 10<br>MTN 1<br>J2:50(3)<br>572377 48094<br>SNI 50<br>SID 2<br>Di 22<br>Di 22 | 580 5<br>Di 1<br>Di 055 9<br>#751 1<br>702377 49075<br>551228<br>580 6<br>Di 05 9<br>#751 1<br>Di 058 9<br>#751 1 | 54D 9<br>Dis 1<br>Dis 54 8<br>87N 1<br>JI-50 01<br>702377 48091<br>5N 212<br>5N 212<br>5N 212<br>5N 212<br>5N 212<br>5N 212<br>5N 212<br>5N 212 | SID 13<br>08 1<br>Diside 7<br>81N 1<br>13:33 (5)<br>702377 45565<br>59:337<br>SID 14<br>06.2<br>Diside 7<br>81N 1 | SID 17<br>Dister 6<br>PTN 1<br>Dister 7<br>PTN 1<br>DISTER 7<br>DISTER 7<br>DISTER 7<br>DI | SID 21<br>08 1<br>Disole 5<br>8171 1<br>12:59 150<br>702577 49077<br>59199<br>SID 22<br>06 2<br>Disole 5<br>8171 1 | 540.25<br>08.1<br>Dicost-4<br>#TN 1<br>12-35131<br>702337.48554<br>554287<br>540.26<br>Cito.2<br>Dicost-4<br>#TN 1 | 540 29<br>Di 00 1<br>Di 00 2<br>8175 1<br>7025377 48090<br>555 224<br>540 30<br>05 2<br>Di 00 2<br>Di 00 2<br>8775 1 | 540 83<br>26 1<br>Disster 2<br>mm f<br>23:3011<br>702377 48536<br>540 84<br>56 2<br>Disster 2<br>840 84<br>26 2<br>Disster 2<br>840 14 | SID 37<br>D8 1<br>Diode 1<br>11-50 01<br>702377 48650<br>SN 276<br>SID 38<br>D05.2<br>Diode 1<br>870 1 | SID 41<br>08 1<br>Diode 11<br>81% 5<br>32-47 (22)<br>702577 47975<br>5% 120<br>SID 42<br>06 2<br>Diode 11<br>81% 5 | SID 45<br>Diode 12<br>PTN 5<br>J1-47 (22)<br>7022377 48008<br>SV247<br>SID 46<br>Diode 12<br>ETN 5 | SID 49<br>08 1<br>Diste 13<br>8171 5<br>31-47 (22)<br>702577 49082<br>576 225<br>SID 50<br>06 2<br>Diste 13<br>8171 5 | 580 53<br>08 1<br>Disse 14<br>#78 3<br>11-67 1221<br>702337 48085<br>59-207<br>580 54<br>08 2<br>Disse 14<br>R78 5 | 5HD 57<br>Diside 15<br>mm 4<br>J2:36<br>702374 48587<br>59: 029<br>SHD 58<br>Di 2<br>Di ode 15<br>mm 4 | 540.61<br>Disole 16<br>#7114<br>10:39<br>702378-49117<br>59(5)4<br>540.62<br>Disole 16<br>#7114 | 540.65<br>Di 1<br>Di ode 17<br>17.54<br>702376-47463<br>5N 521<br>SHD 66<br>DS 2<br>Di ode 17<br>810.66 | 580 69<br>04 1<br>Diode 38<br>81N 2<br>12-54<br>28:025<br>580 70<br>06 2<br>Diode 38<br>81N 2 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 57 N            | 12-26 (2)<br>702577 48557<br>5N 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .72-28-(1)<br>702577 49088<br>5%210                                                                               | J1-25 (1)<br>702577 49075<br>5N 293                                                                                                             | J2-28 (1)<br>702577 48657<br>591382                                                                               | 11-26 (D)<br>702377 48855<br>5N:177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-28 (1)<br>702577 49072<br>59(197                                                                                | 12-28-(2)<br>702577-48645<br>5N:173                                                                                | J2-26 (3)<br>702577 49067<br>5N 195                                                                                  | J3-28-(1)<br>7025177-48600<br>576:340                                                                                                  | J1-26 (U)<br>702577 48652<br>5N 257                                                                    | 70-45 (20)<br>702577 49074<br>5% 292                                                                               | /1-45 (28)<br>702577 40085<br>5N 205                                                               | JD-45 (28)<br>702577 48660<br>591,188                                                                                 | J1-45 (20)<br>702577 40094<br>5%222                                                                                | 12-55<br>702577 47961<br>5N:005                                                                        | 10-55<br>702577 49114<br>59(033                                                                 | J2-23<br>702577 48995<br>5N 025                                                                         | 12-93<br>702577 48595<br>594.027                                                              |
|                 | SID 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SID 7                                                                                                             | SID 11                                                                                                                                          | SID 15                                                                                                            | SID 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 510 23                                                                                                             | SID 27                                                                                                             | SID 31                                                                                                               | SID 35                                                                                                                                 | SID 39                                                                                                 | SID 43                                                                                                             | SID 47                                                                                             | SID 51                                                                                                                | SID 55                                                                                                             | SID 59                                                                                                 | 580.63                                                                                          | SID 67                                                                                                  | SID 71                                                                                        |
| L L             | DB 3<br>Diade 10<br>RTN 1<br>/1-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.3<br>Diode 9<br>87% 1<br>73-22                                                                                 | Diode 8<br>RTN 1<br>II-22                                                                                                                       | Dipde 7<br>87N 1<br>J0-22                                                                                         | 06.3<br>Diode 6<br>RTN 1<br>11-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C6 3<br>Diode 5<br>RTN 3<br>ID-22                                                                                  | 26.3<br>Diode 4<br>RTN 1<br>12-22                                                                                  | D6 5<br>Diode 3<br>RTN 1<br>/1-22                                                                                    | Diode 2<br>87N 1<br>/2-22                                                                                                              | Diode 1<br>87N 1<br>J1-22                                                                              | Diode 11<br>87N 5<br>72-41 (16)                                                                                    | Diode 13<br>87% 5<br>/1-41 (36)                                                                    | Diode 13<br>RTN 5<br>JD-41 (16)                                                                                       | Dipde 14<br>RTN 5<br>J1-41 (06)                                                                                    | Cipcle 15<br>RTN 4<br>J2-29                                                                            | Diode 16<br>879-4<br>2-29                                                                       | Diode 17<br>81N 2<br>12-26                                                                              | Diode 38<br>87N 2<br>72-25                                                                    |
| 58 N            | Ciede 10<br>RTN 1<br>/1-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diode 9<br>8/0v 1<br>75-22                                                                                        | Diode 8<br>87N 1                                                                                                                                | Dipde 7<br>85N 1                                                                                                  | Older 5<br>RTN 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RTN 3                                                                                                              | Cipde 4<br>RTN 1                                                                                                   | Diode 3<br>RTN 1                                                                                                     | Diode 2<br>RTN 1                                                                                                                       | Diode 1<br>8TN 1                                                                                       | Diode 31<br>85N S                                                                                                  | Diode 12<br>£7N 5                                                                                  | Diode 13<br>RTN 5<br>JD-41 (16)                                                                                       | Dipde 14<br>RTN 5                                                                                                  | Cipcle 15<br>RTN 4<br>J2-29                                                                            | Diede 16<br>87N-4                                                                               | Diode 17<br>81N 2                                                                                       | attw 2                                                                                        |

Forward Bias Illumination with Visual Inspection









# Summary

### DART ROSA SOLAR ARRAY

NASA's DART mission is the first-ever spacecraft to demonstrate asteroid deflection by kinetic impactor on an asteroid target

DART's SEP system is comprised of DSS's ROSA solar array and NASA's Evolutionary Xenon Thruster–Commercial (NEXT-C) ion drive system

Two DART ROSA Solar Array protoflight wings have been produced, validated through test, and delivered to the APL

### The DART ROSA solar array met all structural, mechanical, and electrical requirements

 BOL power, 100W/kg, launch loads survivability, and deployed and stowed stiffness performance requirements met

#### This power-class/size of ROSA is now qualified through the DART program and is ready for infusion into follow-on flight programs

• Maxar's Ovzon is the first commercialization of this class/size

DART launch window to 'save the world' is scheduled for November 24, 2021 – February 15, 2022









# Acknowledgments

THANK YOU JHU/APL & NASA

DSS sincerely expresses thanks and appreciation to the DSS DART team, and the JHU/APL and NASA DART teams for their sponsorship and programmatic / technical leadership and in helping DSS execute this successful program

Thank you for your time and consideration !

Innovate or Die !



