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Power Hibernation is an approach to dramatically extend capabilities and duration 
of Low-Cost Robotic Lunar missions by exploiting the common 18650 Li-Ion Battery 
Cell’s ability to tolerate and recover from extreme cold of the lunar night.

• Surveyor Experience

• Lunar Thermal Environment and Mission Constraints. 

• Li-Ion Low Temperature Survival

• Power Hibernation Architecture Assumptions 

• Hibernation and Dawn Operations 

• Cryo-Temperature Electronics Technology

• Power Hibernation Architecture Development

Power Architecture for Hibernation and Dawn Mode Operations



Common Misconception: “Spacecraft batteries cannot take extreme lunar 
night temperatures and will die”.  This is Not True

• New evidence shows that common lithium-ion cells can survive  

• Successful Hibernation depends a power system’s ability to safely restore 
itself at lunar dawn 

Surveyor Missions Experience (1966-1968) 
• Surveyor was not designed for Night Survival
• RTG technology still under development
• Multiple Surveyors did indeed survive the night

• Surveyor 1 operated fully/partially for 6 lunar cycles
• Each mission responded differently 

NASA Photo

Surveyor Experience: Surviving the Lunar Night
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LRO DIVINER: Lunar Day/Night Temperature Range by Latitude

Thermal model calculations of monthly and annual lunar surface temperature variations at various latitudes.

Lunar Night 
Temperatures are 
extremely cold 
everywhere
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Environment and Mission Constraints

Extreme Thermal and Illumination Environment 

• Day temperatures span from below 100K to near 400K based on Latitude

• Night temperatures fall within a 50-100K range regardless of latitude 

• Non-Polar latitudes night durations ~354 hours

• Polar Regions have very low sun angle, varying sun/shade cadence and durations 
• Site elevation combined with near/far topographical features casting shadows

• Seasonal Variations (sun drops below horizon in lunar winter)

Low-Cost Mission Constraints - Commercial Lunar Payload Services (CLPS)

• CLPS landers are low cost, short development cycle

• For Non-Polar Missions
• CLPS landers are not likely to operate much beyond a single lunar daylight period

• Hibernation is the most viable option for survival 

3/15/2021 5



Li-Ion Low Temperature Survival
Corroborating Evidence

Indian Space Research Organization (ISRO) published work on Hibernation

• 2018 ISRO investigated 18650 Li-Ion cell passive lunar night survivability.

• Evaluated 3 manufactures of 18650 Li-ion cells.

• Subjected them to 14 day lunar night at -160°C  (in vacuum)

• Cells recovered charge capacity with no apparent damage or degradation

• ISRO published a power architecture concept for Hibernation

• Its not clear if hibernation capability was on-board Chandrayaan-2 lander 

• (It is clear that they were thinking about it.)

• Growing interest in “Flash-Freezing” of Li-Ion batteries for transportation safety
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18650 Li Ion Cell Investigation at NASA Glenn

Initial Tests Performed at 1 Atmosphere
• LN2 Vapor chilled to 80K (-193°C) 

(3 of 5 Survived)
Refined Tests Performed in Vacuum 

• 70 millitorr
• Cryocooler chilled to 100K (-173°C)
• All units Survived

Li-Ion 18650 cells  
• Voltage drops to 0 volts near 200K (-70°C)
• Voltage recovers above 200K
• No apparent degradation
• NASA GRC Confirms Lunar Night Survivability
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Power Hibernation Architecture Assumptions

Lowest Temperatures occur just before Lunar Dawn

• Non-polar latitudes we assume night is ~354 hours.

• Polar Regions subject to multiple short (Dusk-Dawn) cycles
• Low Sun Elevation, Terrain Obscuration  and Seasonal Variations

• Polar day-time high temperatures are still below 200K

Assume that Li-Ion Batteries will survive the Lunar Night

• Batteries Passively Survive the cold without loss of capability 

• Batteries must be isolated from main bus prior to Dawn

• Requires “Active Cold Capable Controls” to manage the Battery Recovery
• Pre-Heating and Pre-Charging are required

• Battery resumes operation when temperatures and voltages return to normal



Power Hibernation Architecture Assumptions

Solar Arrays expected to Survive and Generate Power at Lunar Dawn.

• Photovoltaic Arrays are tolerant of cryogenic temperatures. 

• PV Arrays at cold temps will cause high open-circuit voltages.
• Array Over-Voltage protection required. 

• Requires Cold Capable Controls to manage array power

Assume Avionics Passively Survives

• Avionics will need to be qualified to passively survive lunar night temperatures 

• Not required to operate below normal temps 

• Requires external Cold Capable Controls to manage temperature recovery



Power Hibernation Architecture Assumptions

Main Bus Control (MBC) is Active at Cryo-temps: 

• Main (Power) Bus Control incorporates “Dawn Mode” functions 

• MBC Dawn Mode
• Must be capable of activating and operating at low temps 

• MBC must operate when flight computers are unavailable

• Manages PV Arrays and Main Bus Voltage

• Manages Battery State (through Battery Management System)

• Enables/Disables System Loads via Power Inhibits.  (Avionics and Payloads)



Hibernation and Dawn Operations 

Lunar Dusk: 
Point Arrays toward Dawn, Shut-Down Loads, Isolate Battery, Wait for Dawn

Lunar Dawn: (first illumination, coldest temperature)

• Solar Array output triggers a “Dawn Mode” within the Main Bus Controller (MBC)

• MBC is composed of electronics designed to operate in extreme cold temperature

• MBC in Dawn Mode operates on Solar Array power alone (Battery still Isolated)

• MBC manages thermal conditioning (Pre-Heaters) for battery and avionics 

• Battery Management System (powered by MBC, also operates in extreme cold)

• Monitor battery temperatures and voltages during Dawn Pre-heat

• At normal temperature BMS pre-charges battery to match main bus voltage

• If a string fault is detected the BMS isolates the faulted string 

• MBC Closes Isolation Relay: Reconnects Battery to Main Bus- Dawn Mode Complete!

• MBC clears “Power Inhibits” allowing system to boots-up as normal
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Power Hibernation Architecture
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Cryo-Temp Electronics Technology

Gallium-Nitride (GaN): (LN2 testing)
• GaN suited for low temp operations 

• Tests indicate good low temp performance

• GaN innately more efficient than Silicon

• Gate Threshold Voltage: Stable to -196C

• ON Resistance: Improves at low temps

• GaN used in Space Power and RF Comm

• More Radiation Tolerant than Si or SiC  

• Si-GaN Switch (GaN with Silicon front end)

• Overcomes Gate Over-Voltage sensitivity

• Simplifies device driver design
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Cryo-Temp Electronics Technology

Silicon-Carbide: Poor low temp performance
• SiC Performance degrades in extreme cold 

• SiC is subject to “Carrier Freeze-Out” 

• Threshold Voltage climbs

• On-Resistance Rds(ON) climbs

Silicon Devices: 
• Silicon still dominates non-power applications

• Wide availability and low cost 

• Huge Body of Knowledge

• Will require temperature compensation 

• Very Large Scale Integrated Circuits (VLSIC)

• Micro-Controllers or FPGAs 

• SiC and GaN not available in VLSIC Figures Courtesy of Marcelo Gonzalez NASA Glenn
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Power Hibernation Architecture Development

Hibernation Battery Development
• Fully characterize electrochemistry through the hibernation thermal cycle.

• Thermal Management  (uniformity temperature, uniform cell output)

• Battery Management System  (cell monitoring, isolating faulty strings, pre-charge control)

Cryo Temperature Electronic Device Studies  
• Gallium-Nitride, Silicon-GaN power switching evaluation

• Cryo-Temperature device evaluations (Controllers and Instrumentation)

Main Bus Controller: Dawn Mode Electronics 
• PV Array Management Approach (Sequential Switching or Shunt)

• Approach to Stabilizing the main bus while battery is disconnected

• Pre-heater Power Regulation 



Power Hibernation Architecture Summary

Hibernation Enables Low Cost Missions Achieve Multi-Lunar Cycles 
• 18650 Li-Ion cells demonstrated a night survival capability

• “Passive Hibernation” minimizes changes to existing hardware

• Reduced dependency on scarce radioisotope heat and power sources

• Robotics and Vehicles operate independent pre-established infrastructure

• Restoration requires an Active Main Bus with “Dawn Mode”

• Capable of operating in extreme cold 

• Capable of operating on array output alone

• Hibernation improves survival and recovery options in contingency situations 

• Ultimately: Hibernation technologies will lead to more robust robotic systems that 
are actually designed for the Lunar Environment.
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