

Update on Li/CFx Primary Cell Testing for Space Applications

Keith J. Billings, Erik J. Brandon, Ratnakumar Bugga, John-Paul Jones, Jasmina Pasalic, John Paul Ruiz, Sarah Stariha, William C. West and <u>Hui Li Seong</u>

Space Power Workshop 2021 Virtual Conference

April 19, 2021

© 2021 by NASA-JPL Published by The Aerospace Corporation with permission.

Proposed Europa Lander Mission Concept

(Source: 2020 Europa/Ocean Worlds Lander Mission Concept Update, May 14, 2020)

- Notional lander lands on Europa for a 22-day surface mission.
- Sample acquisition, analysis and data transmission back to Earth will be powered by Li/CFx primary batteries.
- Battery modules are on the exterior of the Lander.

This document has been reviewed and determined not to contain export controlled technical data. jpl.nasa.gov

Build 1 Test Campaign

- Issued contracts to two vendors in early 2018.
 - Eagle Picher Technologies and Rayovac Corporation.
 - Target spec is >700 Wh/kg at cell level (50 mA discharge at 20°C)
- Tests:
 - 1) Capacity dispersion in manufacturing lots
 - 2) Constant current discharge performance
 - Discharge over range of current and temperatures (50 to 250 mA, 0 to +70°C)
 - 3) Storage testing
 - 1) Real time and accelerated storage, micro-calorimetry
 - 2) Understand battery self-discharge for up to 10 years storage
 - 4) Isothermal calorimetry
 - 1) Compare electrical to thermal power ratio
 - 2) Critical for battery thermal design
- Radiation testing
 - Understand radiation effects on battery performance (electrical, safety)
 - Provide comprehensive data to support power de-rating model

2

Eagle Picher Dispersion Test

- Discharge cells at 250mA, 20°C
 - 10 pristine cells selected across manufacturing lot
 - 10 Irradiated cells + 3 control cells
- Eagle Picher Li/CFx (EPBR) D-cell:
 - Pristine cell-to-cell variation: ~±5.0% capacity (3σ)
 - Post-irradiation capacity loss = ~4.0%
 - Irradiated cell-to-cell variation = $\sim \pm 4.0\%$ capacity (3 σ)

This document has been reviewed and determined not to contain export controlled technical data. jpl.nasa.gov

Rayovac Dispersion Test

- Rayovac Li/CFx (RBR) D-Cell
 - Two manufacturing lots with distinct bifurcation
 - Part of manufacturing variability
 - 2.5% capacity difference between two lots.
 - Overall cell-to-cell variation (3σ): ±5% of capacity
 - Post Irradiation cells lose an average of 4.5% capacity loss, with ±3.4% variation
 - Capacity loss: ~3.0% (LotA) and ~6.0% (LotB)

Build 1 Performance Test Matrix

Cells for Each Condition		Discharge Conditions			
Vendor	Temperature (°C)	50	90	250	
Eagle-Picher	0	3	3	3	
	20	3	3	10	
	40	3	3	3	
	70	3	3	3	
Rayovac	0	3	3	3	
	20	3	3	10	
	40	3	3	3	
	70	3	3	3	

- Test conditions selected based on mission profile.
- Results used to populate power models
- 20°C / 250 mA condition used as baseline to evaluate dispersion in manufacturing lots (cells in red)
- Test on pristine cells only

Eagle Picher Performance Test

- Capacity: Between ~16-18 Ah
- Specific Energy: Between ~525 and 700 Wh/kg
 - Falls short of 700 Wh/kg target (although correction for larger tabs increases specific energy ~5%)

6

– *Targeted improvements with cathode optimization in Build 2*

Rayovac Performance Test

- Capacity: Between ~13.5 and 19.5 Ah
- Specific Energy: Between ~475 and 725 Wh/kg
- Meets >700 Wh/kg target

Storage Test Matrix

Cells on Storage		Storage Duration				
Vendor	Temperature (ºC)	0 days/mth	183 days 6 mth	365 days 12 mth	548 days 18 mth	
Eagle Picher	*20	10	6	6	6	
	30	-	6	6	6	
	40	-	6	6	6	
	60	-	6	6	6	
Rayovac	*20	10	6	6	6	
	30	-	6	6	6	
	40	-	6	6	6	
	60	-	6	6	6	

*20'C storage temp → 18'C actual temp

- Different storage temperatures for real time and accelerated shelf-life studies.
- Half of all cells will be irradiated to 10 Mrad, half pristine
- Due to COVID-19 schedule impacts, some cells were stored for 13.5 and 22 months.

Storage Test Method

1) Visual Inspection and dimensional measurement before vs. after storage

2) Non-destructive measurements before vs. after storage:

- OCV and 1kHz alternating current internal resistance (ACIR)
- 100kHz to 10mHz full sweep electrochemical impedance spectroscopy (EIS)
- Microcalorimetry on 18mo storage samples (data analysis in progress)

3) **Discharge Performance**:

- Constant current discharge (250mA, 20°C)
- Initial voltage drop
 - Minimum voltage recorded within the first hour of discharge
- Mid-point/operating voltage
 - Voltage at 50% DOD
- Capacity achieved at 2.0V

Storage test: Visual Inspection and Dimensional Measurements

- Pristine cells from both vendors remain visually unchanged with <1% change in dimensional measurements after storage.
- Irradiated cells:
 - RBR cells increased in cell length after radiation.
 - After 6 months at 60°C storage, EPBR cells showed signs of bulging in the axial direction while RBR cells leaked electrolyte.
 - 2 of 3 RBR cells had a measurable mass loss of ~2g

Storage Test: EIS

- EIS as a non-destructive battery screening method
- Settings:
 - 100kHz 1.25Hz, 1mV amplitude
 - 1.00Hz 10mHz, 5mV amplitude
 - 10 pts/decade
- From complex plane plot, evaluate:
 - Series resistance:
 - Zre at 10kHz
 - Semicircle resistance:
 - Zre @ (1Hz 10kHz)
 - Low frequency slope:
 - tan⁻¹ <u>(Zim @ 0.01Hz 0.1Hz)</u> = θ
 (Zre @ 0.01Hz 0.1Hz)

Eagle Picher Storage test: Pristine Vs. Irradiated Average Capacity Loss vs. Storage Time (days)

*2 cells only

- At 18°C storage, **Pristine** EPBR shows ~2% capacity loss every year.
- After initial capacity loss of ~4% due to radiation exposure, Irradiated EPBR storage cells lose ~1% capacity every year.

Rayovac Storage test: Pristine vs. Irradiated Average Capacity Loss vs. Storage Time (days)

- **Pristine** RBR cells show low self-discharge rate.
- Similar to EPBR, after initial capacity loss of ~3-6%, irradiated cells do not lose significantly more capacity vs. storage time.
 - Slight apparent capacity increase in irradiated cell is within cell-to-cell variation. 13

Isothermal Calorimetry

Test Objective Radiation Dose Temp, °C Current (mA) # of Cells Cell Conditions

Measure heat evolved during discharge	0	20 50 500 Multicurren 50 50 250	50	1	BOL/pristine
			250	1	
			500	1	
			Multicurrent	3	
			50	1	BOL/irradiated
	10MDad		250	1	
	TOIVIRAU		500	1	
		Multicurrent	3		

Heat Evolution studies

• At various currents, electrical to thermal power ratio of pristine cell is ~60:40

 Radiation exposure does not significantly affect the electrical to thermal power ratio of Li/CFx D-cell

Build 1 Overall Test Summary

Cell Type	EPBR		RBR	
Test	Pristine	Irradiated	Pristine	Irradiated
Post-radiation capacity loss	-4.0%		-4.5%	
Cell-to-cell capacity variation (3σ)	±5%	±4%	±5%	±3%
Performance Test (50mA, 20°C)	650 Wh/kg	NA	700 Wh/kg	NA
Annual Self-Discharge	~2%	~1%	<1%	<1%
Heat Evolution (Electrical : Thermal)	60:40	60:40	60:40	60:40

- Optimization of EPBR cells to achieve 700Wh/kg specific energy in Build 2.
- RBR cells has low self discharge, but is more radiation-sensitive than EPBR:
 - 0.8mm increase in cell length after radiation exposure
 - Cell leaking at 60'C storage after 6 months.
- Investigate electrolyte additives and radiation effects.

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

This document has been reviewed and determined not to contain export controlled technical data. jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

jpl.nasa.gov

© 2021 California Institute of Technology. Government sponsorship acknowledged.