Small Satellites Deployable solar panels for Deep Space Missions

V. Díaz, M. Vázquez 38th annual Space Power Workshop April 19-22 2021 VIRTUAL

© 2021 by DHV Technology. Published by The Aerospace Corporation with permission

DHV TECHNOLOGY Málaga (Spain)

OUTLINE

- Short Company presentation
- 6U Mission for Deep Space
 - Power needs & Radiation Hardness & Environmental requirement
 - Design of solar panels
 - Simulations
 - Test plan
- Conclusions

DHV Technology is a company specialized on the design and manufacture of solar panels for small satellites

- DHV Technology was funded on 2013, located in Malaga (Spain)
- Staff: 54 focused on Mechanical design, FEM analysis and simulations, solar panel testing and validation, solar cells
- Staff coming from high maturity markets: Photovoltaics, Defence, Electronic, Renewable companies. <u>Since 1995 in Solar Panels</u>
- Facilities: Offices 1.400 m². ISO-7 clean room 1.200m² warehouse 850 m²

- Welding, coverglass & bypass diodes performed in-house
- Solar panels are assembled and welded in-house
- On-site dry storage lockers for completed assembly storage prior to delivery

Solar panels manufactured using manual or semi-automated processes

- DHV Technology manufactures solar panels using CFRP over an aluminium honeycomb core.
- Future capabilities include fully automated solar cell placement and bonding
- DHV Technology is developing end-to-end automated production capacity that streamlines inspections, inventory transactions, welding & encapsulation and final testing

Solar Arrays of different architectures PocketQube, CubeSat 1U, 2U, 3U, 6U, 12U

Small Satellites

OUTLINE

- Short Company presentation
- <u>6U Mission for Deep Space</u>
 - Power needs & Radiation Hardness & Environmental requirement
 - Design of solar panels
 - Simulations
 - Test plan
- Conclusions

6U Mission for Deep Space

CubeSat Deployers

Overview

- Initial configuration of vehicle optimized for near-term heavy-lift capability
- Completed Critical Design Review in July 2015

SLS Block 1

Capability: >70 metric tons

Height: 322 feet (98 meters)

Weight: 5.75 million pounds (2.6 million kg)

Thrust: 8.8 million pounds (39.1 million Newtons)

Available: 2019

Secondary Paylooads

On Exploration Mission-1, SLS will include thirteen 6U payload locations of up to 14kg per CubeSat

6U Mission for Deep Space

6U Mission for Deep Space

Moon

- Lunar Flashlight (NASA)
- Lunar IceCube (Morehead State University)
- LunaH-Map (Arizona State
- University)
- OMOTENASHI (JAXA)

Asteroid

NEA Scout

 CuSP (Southwest Research Institute)

Earth

EQUULEUS (JAXA)
Skyfire (Lockheed Martin)

And Beyond

- Biosentinel (NASA)
- ArgoMoon (ESA/ASI).
- Three Centennial Challenge Winners (TBD)

Power Needs, Radiation, Environmental Requirements

- 80 W BOL (5 strings 8 solar cells in series per wing.40W)
- Two wings double deployable
- Reduced thickness (less than 5 mm in stowed configuration including everything)
- Van Allen Belts Crossing requirements
- Vibration, Shock, Vibro Acoustic and TVAC test requirements

Design of Solar Panels

- Mechanical parts of the Solar Array
 - Hinges, Torsion Springs
 - Tie Down and other mechanical items
- Substrate selection
- Solar cells, connectors, sensors
- Thermal knife and associated circuitry
- Design extension to meet Interplanetary missions: RAD HARD, Special Coatings, ...

Simulations: modelling of the panels

- Substrates have been modeled with linear plate elements
- Solar cells
- Interface with panels
- Hinges, connections to the satellites
- Torsion Springs, Tie down
- First mode 140 Hz
- Static Load 45 g

Simulations: results

Stowed model. Static loads. Displacement analysis X, Y, Z

Test plan

Mechanical and vibration tests: (GSFC-STD-7000A

standard, NASA GEVS levels.)

- sinusoidal vibration
- random vibration
- shock loads
- resonance survey test

- Thermal and vacuum test: thermal cycling at low pressure conditions.
- Electric performance and over voltage test
- Development of Tools for Gravity compensations during deployment tests

Test plan: deployment GSE

Test plan: deployment GSE

In house Deployment process by Ground Support Equipment

Test plan: IV test

In-house Flash IV Test: 40 W BOL per wing

Test plan: Vibro-acoustic

External Vibro acoustic test

- Structural model
- External Vibro acoustic test trapezoidal base: 5,7 m 7,35 m, 6,25 m and 6,3 m
- Height 4,90 ,
- Area 210 m2
- Volume 200 m3
- Plus 9 plane acoustic diffusers for a more diffuse field

OUTLINE

- Short Company presentation
- 6U Mission for Deep Space
 - Power needs & Radiation Hardness & Environmental requirement
 - Design of solar panels
 - Simulations
 - Test plan
- <u>Conclusions</u>

Conclusions

DHV is delivering to the market Solar Panels for Small Satellites and Cubesats 3U,6U, 12U for LEO but also interplanetary Missions

- Full customized design according to mission requirements is considered
- and executed
- A dedicated test plan is carried out for each project. Engineering model is extremely recommended on a deployable cubesat mission

Thanks so much for your kind attention

Contact details:

Vicente Diaz Managing Director & Co-Founder v.diaz@dhvtechnology.com Miguel A. Vázquez Managing Director & Co-Founder m.vazquez@dhvtechnology.com

www.dhvtechnology.com

