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Multijunctions at NREL
Inverted Metamorphic Multijunction Solar Cells

IMM efficiencies 2J 3J 4J 6J
Concentrated PV 35.5 41.2 45.7 47.1
1-sun terrestrial 32.6 37.4 38.3 39.2
1-sun AM0 - - 35.3 -
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Outline

Component Development
• Metamorphic GaInAsP

• replace radiation-soft GaAs or GaInAs
• Graded Buffer Bragg Reflector

• enable thin GaAs subcell without  
dedicated DBR

• GaAs subcell improvements
• strain-balanced solar cells

3-Junction IMM
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Metamorphic GaInAsP
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Metamorphic GaInAsP

• Wide range of accessible bandgaps
• Lattice-matched GaInAsP previously studied, 

shown to be radiation hard
• Limited work on lattice-mismatched GaInAsP

GaInAsP solar cells: 
Sharps, IEEE PVSC, 1991

Yamaguchi, Radiation-resistant 
solar cells for space use
Sol. En. Mat. & Sol. Cells  68 (2001) 31.
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• Drop-in replacements for IMM or UMM 
subcells
• 1.4 eV GaAs, 1.0 eV GaInAs, for example

• Study radiation hardness vs alloy content

Lattice-mismatched GaInAsP

1.9-eV GaInP

1.4-eV GaAs

1.0-eV GaInAs

graded buffer

3J IMM structure

lattice constant

Increasing P, InGaInP

GaInAs
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TEM of lattice-mismatched GaInAsP

Cross-sectional TEM
BF STEM
• GaInAsP separates into InAs-rich 

and GaP-rich regions
• Composition nonuniformity 

leads to defects at GaInAsP –
GaInP BSF interface

• High defect density > 5 x107/ cm2

TEM courtesy of B. Haidet, K. Mukherjee, UCSB
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CL and IV of improved 1.0-eV GaInAsP

• Initial GaInAsP is highly defective due to 
composition modulation

• Limiting composition nonuniformity via 
growth conditions avoids defect 
formation, improves device performance
• High V/III ratio, high growth rate, 

reduced thickness

60 µm

Plan-view cathodoluminescence

Standard 1.0 eV GaInAs
Initial 1.0 eV GaInAsP
Improved 1.0 eV GaInAsP: less 
composition nonuniformity
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Metamorphic GaInAsP cell results

• GaInAsP has a tunable bandgap → enables higher current than GaAs
• Excellent EQE and IQE for GaInAsP with both 0.95 and 1.35-eV 
• Phosphorous contents up to 40% demonstrated → potentially higher rad tolerance

Woc = Eg - Voc
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GaInAsP subcell in 3J IMM

• Total Voc is high, GaInAsP Woc = 0.40 (from EL), 
• Excellent carrier collection (no ARC)
• No loss in GaInAsP subcell performance in a multijunction

1.9-eV GaInP

1.4-eV GaAs

1.0-eV GaInAsP

graded buffer

3J IMM structure

lattice constant



Graded Buffer Bragg Reflectors
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Graded Buffer  +  Bragg Reflector  =  GBBR 

Distributed Bragg Reflector (DBR)Compositionally Graded Buffer (CGB)

• DBR aids collection in an optically thin subcells
• Low diffusion length 
• High bulk recombination
• Radiation hardness 
• Quantum wells 

• Alternating layers with refractive index contrast

• Grades the lattice constant to metamorphic material 
with desired bandgap

• Strain relieved via dislocation glide

X-sectional TEM

Lattice 
constant

R.M. France et al., Metamorphic Epitaxy for Multijunction Solar Cells, MRS Bulletin, 41, 202 (2016). 
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Design and TEM of AlGaInAs GBBR

Design:
• Slowly increase Indium-content to increase lattice constant
• Alternate Aluminum-content for refractive index contrast

Cross-sectional TEM:
• No noticeable affect of alternating Al on dislocations
• Low threading dislocation density

GaInP/GaAs 

Ga0.7In0.3As 

scalebar
200 nm

AlGaInAs content:
Aluminum

Gallium
Indium

Refractive 
Index

004 
2-beam
TEM

Low Al
High Al
Low Al
High Al
Low Al
High Al
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Reflectance and Dislocation Density of GBBR
Dislocation Density 
(x106 /cm2)
CGB control 1.0
2-µm GBBR 1.6
8-µm GBBR 0.8

Vary thickness of GBBR, compare to controls
• Minor increase in Woc, TDD wrt control
• Reflectance increases and Woc, TDD decreases with 

increasing buffer thickness, as expected
• Over 99% reflectance possible in GBBR

Variable buffer

GaAs

Ga0.7In0.3As

ARC

Reflectance 
meas.

Dislocation density 
meas.

Solar cell
meas.
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Triple GBBR for radiation-hard, thin GaAs

GBBR Bandwidth      Jsc increase
design        (nm) (mA/cm2)
1xGBBR 65 1.0
3xGBBR         140 1.5

Variable buffer

800 nm GaAs

Ga0.7In0.3As

Triple GBBR target wavelengths

• GBBR enables thin GaAs for improved radiation hardness
• Jsc increased by 1.5 mA/cm2 under AM0 compared to 

baseline 800 nm thick GaAs cell without GBBR
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3J-IMM + MQW demonstration

Global Direct AM0

J1 15.6 15 19.4

J2 16.2 16.6 18.1

J3 14.4 15.2 18.4

J2 QW + 
GBBR gain 2.0 2.1 2.5

Global Direct AM0 

Efficiency 36.5 36.6 32.4

Voc 2.93 2.93 2.95

Photocurrents from EQE (mA/cm2)

I-V results

• GBBR allows second pass through MQWs, which 
increase sub-bandgap absorption

MQW excitonic peak, 
80% EQE @ 925 nm



GaAs strain-balanced solar cells
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Strain-balanced solar cells

Terrestrial spectrum JV, am1.5g

• Excellent EQE and Voc achieved in strain-
balanced solar cell

• Sub-bandgap Jsc increase of 3 mA/cm2 under 
space spectrum, am0

GaAs
InGaAs
GaAsP
InGaAs
GaAsP
InGaAs
GaAsP

GaAs

Structure

Lattice constant
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2-junction strain-balanced am0 device

SBSL increases BOL efficiency
• Measured without ARC: Jsc = 14.0 mA/cm2, Eff. = 21.7%
• Predicted with ARC: Jsc > 19 mA/cm2, Eff. >29%

1.9-eV GaInP

2J structure

1.34-eV SBSL
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Summary

Component Development
• Metamorphic GaInAsP

• replace radiation-soft GaAs or GaInAs

• Graded Buffer Bragg Reflector
• enable thin GaAs subcell without  dedicated DBR

• Strain-balanced solar cells
• Excellent BOL efficiency
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