22.04.2021

ON THE PERFORMANCE AND USE OF THE LARGE AREA MULTI-JUNCTION SOLAR ARRAY TESTER: HIGH^{LIGHT} SAT

© 2021 by Pasan. Published by The Aerospace Corporation with permission

INTRODUCTION / TOC

Concept of our metrological tool Characteristics and capabilities of the tool Design and manufacturing process of our filters Use cases and calibration of the tool in production Testing 3J and the 5J / 6J challenge

CONCEPT

THE NEED

- Measure large area (circa 8 -12 m²) multijunction solar arrays
- Ensure that each junction is optically pumped as it would in space

- Ensure the highest uniformity of the light source over measurement area
- Simulate Solar spectrum in space AM0 or its equivalent

Photo courtesy of Airbus Space & Defence

THE BUILDING BLOCK - STANDARD 1 J TESTER

Light box simulates the AM 1.5G spectrum

Spectral control & uniformity (< 1%)

- Customized interferential filters
- High density plasma Xenon flash tubes

Uniformity of Irradiance (< 1%)

Advanced uniformity mask (cross/rosette)

Pulse Stability (< 1% LTI)

4 irradiance channel e-load with < 0.1% precision

THE 4J TESTER

CHARACTERISTICS

TYPICAL DESIGN FOR A 4J SYSTEM Simulator spectra matching 4 CoCell Ref. Currents

Spectrum calibration within 0.3% of target reference

	CoCell currents [mA]							
	1SUN at 8 m				0.1 SUN at 8 m			
	I ₁	I_2	l ₃	I_4	I ₁	I_2	l ₃	I ₄
Reference	411.4	447.3	443.8	513.3	41.14	44.73	44.38	51.33
Measured	410.4	447.1	444.7	513.0	41.17	44.73	44.39	51.31
δΙ [%]	-0.25	-0.04	0.20	-0.05	0.08	-0.01	0.02	-0.04

NON UNIFORMITY (NU) OF IRRADIANCE

Measured by 4 junctions on a 4m x 3m surface

Measured non uniformities of 4 CoCells

NU < +/- 1% for 3.0m x 4.0m surface

NU < +/- 2% for 3.0m x 4.5m surface

HIGH TEMPORAL STABILITY OF LIGHT PULSE Light Temporal Instability < 1% for each junctions

Simulator light spectrally stable within 1% according to 4 junctions technology

4 sources controlled individually by feedback loop

DESIGN & MANUFACTURING

THE MODEL BEHIND OUR SIMULATIONS

$I_{j,\theta} = A_j \sum_i \int E_{Xe}(\lambda) \bullet T_i(\lambda, \theta) \bullet SRj(\lambda) d\lambda$

DESIGN STEP 1 – INITIAL FILTER DESIGN

Pasan's Simulation environment

★ I_{j,θ} = A_j∑_i ∫ E_{Xe}(λ) • T_i(λ, θ) • SRj(λ)dλ
★ Set θ = 0; Along optical axis
★ Iterative algorithm Min(I_{refi} vs I_{calci})

Outputs

An initial guess of the filter design parameters

ANGULAR DEPENDENCE OF FILTERS

Non-uniformity due to angular dependence of interference filters modifies transmission at different points in the plane

DESIGN STEP 2 – OPTIMIZED SPATIAL UNIFORMITY

MANUFACTURING SYSTEM QUALIFICATION

- Filter designed for sources nominal operation point (500 A current in Xe)
- Check with supplier simulations and measurements for achievement of design
- Filters and model have imperfections → Sources operate at actual set points (between 400 A & 600A)
- At factor acceptance of the tool find actual operation point with a calibration process

CALIBRATION & USE CASES

CALIBRATION OF TOOL ONCE IN USE

PASAN

Calibration of the system :

- 1. Measure I_{SCJI} on a RefCells on the optical axis
- 2. Calibration acceptance criteria < 0.5 % (I vs. I_{Ref1}) on measured RefCell
- 3. Requires 3 + 2N + 1 flashes (N = number of junctions)
- 4. If needed single flash adjustments to reach desired acceptance criteria.
- 5. Continuous calibration mode also available.

4 DIFFERENT USE CASES

- Actual set points of the sources within operational limits for at least 4 designs of 4J technology
- → Robust design methodology (simulations)
- → Robust manufacturing process

Measured deviation from nominal set point

OTHER JUNCTIONS & CHALLLENGES

SWITCHING BETWEEN 4J & 3J

Simulation environment is the same

The light box geometry is the same

What changes is the filters (20 minutes to change)

Switch software from 4J to 3J mode

4J 4 Sources

3J 3 Sources

5J AND 6J CHALLENGES

- Adapt simulation environment for 5J & 6J
- Higher number of sources (lamps L1, L2,...) means smaller uniform area
- Higher number of junction means more constraint on filter designs and its angular dependencies incidence on uniform area
- Additional channels needed on e-load (currently limited to 4 channels)

MERCI THANK YOU